Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Kidney Int ; 69(10): 1765-73, 2006 May.
Article in English | MEDLINE | ID: mdl-16541017

ABSTRACT

Leukocyte infiltration, a hallmark of renal diseases, is orchestrated in part by the actions of chemokines. The chemokine CXCL8/interleukin (IL)-8 is expressed during renal diseases and allograft rejection, whereas the corresponding receptor CXCR1 has not been described previously. Expression of CXCR1 was characterized in peripheral blood using multicolor fluorescence-activated cell sorter analysis (FACS). CXCR1 was localized in 81 formalin-fixed, paraffin-embedded renal specimens by immunohistochemistry using a monoclonal antibody against human CXCR1. Included were biopsies with crescentic glomerulonephritis (CGN, n = 22), immunoglobulin (Ig) A nephropathy (n = 15), membranoproliferative glomerulonephritis (MPGN, n = 17), lupus nephritis (n = 12), membranous nephropathy (n = 11), and non-involved parts of tumor nephrectomies (n = 4). Consecutive tissue sections of human tonsils, allograft explants, and renal biopsies were stained for CD15- and CD68-positive cells. Expression of CXCR1 and CXCL8/IL-8 mRNA was quantified by real-time reverse transcriptase-polymerse chain reaction of microdissected renal biopsies (n = 35) of the same disease entities. By FACS CXCR1 expression was found on polymorphonuclear CXCR1 expression by polymorphonuclear leukocytes (PMNs), natural killer cells, and a subpopulation of monocytes. By immunohistochemistry, CXCR1 expression was found on infiltrating inflammatory cells (predominantly PMNs), as well as on intrinsic renal cells (arterial smooth muscle cells, endothelial cells of peritubular capillaries). The distribution pattern of CXCR1 differed between disease entities. The highest numbers of glomerular CXCR1-positive cells were present in biopsies with MPGN, followed by lupus nephritis, and CGN. CXCR1 might be involved in the recruitment of PMNs to the glomerular tuft, which could be targeted by CXCR1-blocking agents.


Subject(s)
Glomerulonephritis/metabolism , Receptors, Chemokine/metabolism , Flow Cytometry , Glomerulonephritis/classification , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Humans , Immunohistochemistry , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Receptors, Chemokine/analysis
2.
J Lab Clin Med ; 136(5): 379-89, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11079465

ABSTRACT

Chronic metabolic acidosis (CMA) in human beings is characterized by increased renin-angiotensin-aldosterone (RAA) activity and cortisol secretion as well as nitrogen wasting. The purpose of this study was to examine whether and to what extent increased RAA activity (i.e., angiotensin II or aldosterone) regulates acid-base equilibrium in CMA and thus might co-determine the severity of acidosis. CMA was induced in 8 normal subjects by oral NH4Cl administration (2.1 mmol/kg body weight per day) for 7 days, followed by a 7-day period of spironolactone (100 mg, 4 times a day by mouth), followed by a 4-day period of spironolactone and losartan (100 mg, every day by mouth). NH4Cl feeding was continued during all study periods. Spironolactone resulted in exacerbation of acidosis ((HCO3)p decreased from 19.8+/-0.4 mmol/L to 17.7+/-0.6 mmol/L, P<.005) because of a large increase in endogenous acid production, as evidenced by significant increases in net acid excretion (116 to 185 mmol/day, P<.005), urinary anion gap (+31 mEq/day, P<.05), and sulfate excretion (+32 mEq/day, P<.05). Plasma potassium increased from 4.2 to 4.6 mmol/L (P<.05) because of decreased urinary potassium excretion (from 108 to 92 mmol/day, P<.05). Plasma angiotensin II, cortisol, aldosterone, urinary aldosterone, urinary tetrahydrocortisol, free cortisol, and nitrogen excretion increased significantly. The subsequent addition of losartan to spironolactone administration resulted in further exacerbation of acidosis ((HCO3)p decreased to 15.7+/-0.4 mmol/L, P<.05) and hyperkalemia (5.0 mmol/L, P<.05) with no change in plasma anion gap. Renal potassium excretion decreased from 92 to 73 mmol/day (P<.05) on day 1. Exacerbation of acidosis was accounted for by a renal mechanism, as evidenced by the significant decrease in net acid excretion and unchanged urinary unmeasured anion and nitrogen excretion. We conclude the following: (1) AT-1 blockade by losartan exacerbates acidosis by inducing a distal-tubular acidification defect. Angiotensin II is an important modulator of the renal acid excretory response to CMA in human beings. (2) Inhibition of aldosterone action by spironolactone in CMA results in an increase in endogenous acid production and exacerbates acidosis by a non-renal mechanism that is mediated, at least in part, by exacerbated hyperglucocorticoidism.


Subject(s)
Acid-Base Equilibrium , Acidosis/metabolism , Aldosterone/physiology , Angiotensin II/physiology , Adrenocorticotropic Hormone/blood , Chronic Disease , Electrolytes/metabolism , Female , Humans , Hydrocortisone/metabolism , Losartan/pharmacology , Male , Nitrogen/metabolism , Spironolactone/pharmacology
3.
Kidney Int ; 57(1): 41-9, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10620186

ABSTRACT

UNLABELLED: Angiotensin II increases the intracellular calcium activity in podocytes of the intact glomerulus. BACKGROUND: Knowledge about biological functions of podocytes in the glomerulus is limited because of its unique anatomical location. Here we introduce a new method for measuring the intracellular calcium activity ([Ca2+]i) in the podocyte in the intact glomerulus. METHODS: With the help of fluorescence high-resolution digital imaging and a recently developed ultraviolet laser-scanning microscope, [Ca2+]i was measured in fura-2-loaded glomeruli and single podocytes of intact microdissected rat glomeruli. RESULTS: Angiotensin II (Ang II) increased [Ca2+]i reversibly in a biphasic and concentration-dependent manner. In contrast to Ang II, bradykinin, thrombin, arginine vasopressin, and serotonin did not change [Ca2+]i in the glomerulus. At reduced extracellular Ca2+ activity, Ang II released [Ca2+]i from intracellular stores, but the second phase, corresponding to a Ca2+ influx from the extracellular space, was absent. The L-type Ca2+ channel blocker nicardipine did not influence the Ang II-mediated [Ca2+]i increase, and an increase of the extracellular K+ concentration did not change [Ca2+]i in the glomerulus. The angrotensin II type I (AT1) receptor antagonist losartan inhibited the Ang II-mediated [Ca2+]i increase. Confocal [Ca2+]i measurements using fura-2 or fluo-3 or fluo-4 on the single cell level show that some of the Ang II-mediated [Ca2+]i response originated from podocytes. Costaining with calcein allowed the identification of podocytes because of the characteristic morphology and location in relationship to the capillary network. CONCLUSIONS: These data suggest that podocytes in the intact glomerulus respond to Ang II with an increase of [Ca2+]i via an AT1 receptor.


Subject(s)
Angiotensin II/pharmacology , Calcium/metabolism , Kidney Glomerulus/drug effects , Animals , Arginine Vasopressin/pharmacology , Bradykinin/pharmacology , Fluorescent Dyes , Kidney Glomerulus/cytology , Kidney Glomerulus/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Rats , Serotonin/pharmacology , Thrombin/pharmacology
4.
Pflugers Arch ; 439(3): 378-84, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10650991

ABSTRACT

The Na(+2)Cl(-)K+ cotransporter accepts NH4+ at its K+-binding site. Therefore, the rate of cytosolic acidification after NH4+ addition to the bath (20 mmol/l) measured by BCECF fluorescence can be used to quantify the rate of this cotransporter. In isolated colon crypts of rat distal colon (RCC) addition of NH4+ led to an initial alkalinization, corresponding to NH3 uptake. This was followed by an acidification, corresponding to NH4+ uptake. The rate of this uptake was quantified by exponential curve fitting and is given in arbitrary units (delta fluorescence ratio units/1000 s). In pilot experiments it was shown that the pH signal caused by the Na(+)2Cl(-)K+ co-transporter could be amplified if the experiments were carried out in the presence of bath Ba2+ to inhibit NH4+ uptake via K+ channels. Therefore all subsequent experiments were performed in the presence of 1 mmol/l Ba2+. In the absence of any secretagogue, preincubation of RCC in a low-Cl- solution (4 mmol/l) for 10 min enhanced the uptake rate significantly from 1.70+/-0.11 to 2.54+/-0.27 U/1000 s (n=20). The addition of 100 mmol/l mannitol (hypertonic solution) enhanced the rate significantly from 1.93+/-0.17 to 2.84+/-0.43 U/1000 s (n=5). Stimulation of NaCl secretion by a solution containing 100 micromol/l carbachol (CCH) led to a small but significant increase in NH4+ uptake rate from 2.06+/-0.34 to 2.40+/-0.30 U/1000 s (n= 11). The increase in uptake rate observed with stimulation of the cAMP pathway by isobutylmethylxanthine (IBMX) and forskolin (100 micromol/l and 5 micromol/l, respectively) was from 2.39+/-0.24 to 3.06+/-0.36 U/1000 s (n=24). Whatever the mechanism used to increase the NH4+ uptake rate, azosemide (500 micromol/l) always reduced this rate to control values. Hence three manoeuvres enhanced loop-diuretic-inhibitable uptake rates of the Na(+)2Cl(-)K+ cotransporter: (1) lowering of cytosolic Cl- concentration; (2) cell shrinkage; (3) activation of NaCl secretion by carbachol and (4) activation of NaCl secretion by cAMP. The common denominator of all four activation pathways may be a transient fall in cell volume.


Subject(s)
Carrier Proteins/metabolism , Colon/metabolism , Algorithms , Animals , Carbachol/pharmacology , Carrier Proteins/biosynthesis , Cell Size/drug effects , Chlorides/metabolism , Colon/cytology , Colon/drug effects , Cyclic AMP/metabolism , Cytosol/drug effects , Cytosol/metabolism , Hydrogen-Ion Concentration , Hypertonic Solutions/pharmacology , In Vitro Techniques , Kinetics , Muscarinic Agonists/pharmacology , Potassium/metabolism , Quaternary Ammonium Compounds/metabolism , Rats , Sodium/metabolism , Sodium-Potassium-Chloride Symporters , Up-Regulation/physiology
5.
Kidney Int ; 56(5): 1700-9, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10571778

ABSTRACT

BACKGROUND: The neutralization of the polyanionic surface of the podocyte by perfusion of kidneys with polycations, such as protamine sulfate, leads to a retraction of podocyte foot processes and proteinuria. This study investigates the effects of protamine sulfate or anionic, neutral, or cationic dextrans on the cytosolic calcium activity ([Ca2+]i) in podocytes. METHODS: [Ca2+]i was measured in single cultured differentiated mouse podocytes with the fluorescence dye fura-2/AM. RESULTS: Protamine sulfate caused a concentration-dependent and partially reversible increase of [Ca2+]i (EC50 approximately 1.5 micromol/liter). Pretreatment of the cells with heparin (100 U/liter) inhibited the protamine sulfate-mediated increase of [Ca2+]i. Like protamine sulfate, diethylaminoethyl dextran (DEAE-dextran) concentration dependently increased [Ca2+]i in podocytes (EC50 approximately 20 nmol/liter), whereas dextran sulfate or uncharged dextran (both 10 micromol/liter) did not influence [Ca2+]i. A reduction of the extracellular Ca2+ concentration (from 1 mmol/liter to 1 micomol/liter) partially inhibited the protamine sulfate and the DEAE-dextran-induced [Ca2+]i response. Flufenamate (100 micromol/liter) or Gd3+ (10 micromol/liter), which are known to inhibit nonselective ion channels, did not influence the [Ca2+]i increase induced by protamine sulfate. In the presence of thapsigargin (50 nmol/liter), an inhibitor of the endoplasmic reticulum Ca2+-ATPase, both protamine sulfate and DEAE-dextran increased [Ca2+]i. CONCLUSIONS: The data indicate that polycations increase podocyte [Ca2+]i. The increase of [Ca2+]i may be an early event in the pathogenesis of protamine sulfate-mediated retraction of podocyte foot processes.


Subject(s)
Calcium Signaling , Kidney Glomerulus/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 3T3 Cells , Animals , Benzoquinones , Cells, Cultured , DEAE-Dextran/pharmacology , Heparin/pharmacology , Lactams, Macrocyclic , Marine Toxins , Mice , Muramidase/pharmacology , Oxazoles/pharmacology , Protamines/pharmacology , Quinones/pharmacology , Rifabutin/analogs & derivatives , Staurosporine/pharmacology , Thapsigargin/pharmacology
6.
J Am Soc Nephrol ; 10(10): 2084-93, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10505684

ABSTRACT

Prostaglandins participate in the regulation of important glomerular functions and are involved in the pathogenesis of glomerular diseases. This study investigates the influence of prostaglandins on membrane voltage, ion conductances, cAMP accumulation, and cytosolic calcium activity ([Ca2+]i) in differentiated podocytes. Prostaglandin E2 (PGE2) caused a concentration-dependent depolarization and an increase of the whole cell conductance in podocytes (EC50 approximately 50 nM). Compared with PGE2, the EP2/EP3/EP4 receptor agonist 11-deoxy-PGE1 caused an equipotent depolarization, whereas the DP receptor agonist BW 245 C, the EP1/EP3 receptor agonist sulprostone, and the IP receptor agonist iloprost were at least 100 to 1000 times less potent than PGE2. The EP2 receptor agonist butaprost did not change membrane voltage of podocytes. The depolarizing effect of PGE2 was increased in an extracellular solution with a reduced Cl- concentration (from 145 to 32 mM). PGE2 and the prostaglandin agonists, but not the IP receptor agonist iloprost and the EP2 receptor agonist butaprost, induced a time- and concentration-dependent cAMP accumulation in podocytes. In fura-2 fluorescence experiments, PGE2, sulprostone, PGF2alpha, fluprostenol (a potent FP agonist), and U-46619 (a selective thromboxane A2 agonist) induced a biphasic increase of [Ca2+]i in 60 to 80% of podocytes. In reverse transcription-PCR studies, podocyte mRNA for the EP1, EP4, FP, and TP receptor could be amplified. These data indicate that in podocytes, PGE2 regulates distinct cellular functions via the EP1 and EP4 receptor, thereby increasing [Ca2+]i and cAMP, respectively. Furthermore, PGF1alpha and U-46619 increase [Ca2+]i via their specific receptors.


Subject(s)
Cyclic AMP/metabolism , Kidney Glomerulus/metabolism , Receptors, Prostaglandin E/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Base Sequence , Calcium Isotopes/analysis , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Dinoprost/pharmacology , Dinoprostone/pharmacology , Endothelium/metabolism , Ion Transport/drug effects , Kidney Glomerulus/cytology , Mice , Molecular Sequence Data , Patch-Clamp Techniques , Polymerase Chain Reaction , RNA, Messenger/analysis , Radioimmunoassay , Receptors, Prostaglandin E/genetics , Sensitivity and Specificity
7.
Kidney Int Suppl ; 67: S168-70, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9736279

ABSTRACT

Angiotensin II modulates cellular functions of podocytes. The aim of this study was to examine the effects of angiotensin II (Ang II) on membrane voltage (Vm) and cytosolic calcium activity ([Ca2+]i) of rat podocytes. To approach better the in vivo situation, we have developed an experimental approach that allows podocytes to be studied in the intact microdissected glomerulus. Ang II depolarized podocytes in the glomerulus (EC50 15 nM, N = 49). Like podocytes in the glomerulus, podocytes in short-term culture also depolarized in response to Ang II (10 nM, N = 5). Ang II increased [Ca2+]i in podocytes in culture (EC50 3 nM, N = 229). In a solution with reduced extracellular [Ca2+] (10 microM), Ang II-mediated [Ca2+]i increase was significantly reduced by 60% +/- 20% (N = 12). Flufenamate, an inhibitor of nonselective ion channels, inhibited Ang II-mediated increase of [Ca2+]i (IC50 20 microM, N = 29). The Ang subtype 1 (AT1) receptor antagonist losartan inhibited both Ang II-mediated depolarization and [Ca2+]i increase in podocytes (N = 5 to 35). Our results support the concept that Ang II might influence podocyte function directly via an AT1 receptor.


Subject(s)
Angiotensin II/pharmacology , Kidney Glomerulus/drug effects , Kidney Glomerulus/physiology , Animals , Calcium/metabolism , Cells, Cultured , Electrophysiology , Kidney Glomerulus/cytology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Rats
8.
J Am Soc Nephrol ; 9(3): 335-45, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9513895

ABSTRACT

The aim of this study was to investigate the influence of adrenoceptor agonists on the intracellular calcium activity ([Ca2+]i), membrane voltage (Vm), and ion conductances (Gm) in differentiated mouse podocytes. [Ca2+]i was measured by the Fura-2 fluorescence method in single podocytes. Noradrenaline and the alpha 1-adrenoceptor agonist phenylephrine induced a reversible and concentration-dependent biphasic increase of [Ca2+]i in podocytes (EC50 approximately 0.1 microM for peak and plateau), whereas the alpha 2-adrenoceptor agonist UK 14.304 did not influence [Ca2+]i. The [Ca2+]i response induced by noradrenaline was completely inhibited by the alpha 1-adrenoceptor antagonist prazosin (10 nM). In a solution with a high extracellular K+ (72.5 mM), [Ca2+]i was unchanged and the [Ca2+]i increase induced by noradrenaline was not inhibited by the L-type Ca2+ channel blocker nicardipine (1 microM). Vm and Gm were examined with the patch-clamp technique in the slow whole-cell configuration. Isoproterenol, phenylephrine, and noradrenaline depolarized podocytes and increased Gm. The order of potency for the adrenoceptor agonists was isoproterenol (EC50 approximately 1 nM) > noradrenaline (EC50 approximately 0.3 microM) > phenylephrine (EC50 approximately 0.5 microM). The beta 2-adrenoceptor antagonist ICI 118.551 (5 to 100 nM) inhibited the effect of isoproterenol on Vm. Stimulation of adenylate cyclase by forskolin mimicked the effect of isoproterenol on Vm and Gm (EC50 approximately 40 nM). Isoproterenol induced a time- and concentration-dependent increase of cAMP in podocytes. The effect of isoproterenol was unchanged in the absence of Na+ or in an extracellular solution with a reduced Ca2+ concentration, whereas it was significantly increased in an extracellular solution with a reduced Cl- concentration (from 145 to 32 mM). The data indicate that adrenoceptor agonists regulate podocyte function: They increase [Ca2+]i via an alpha 1-adrenoceptor and induce a depolarization via a beta 2-adrenoceptor. The depolarization is probably due to an opening of a cAMP-dependent Cl- conductance.


Subject(s)
Catecholamines/pharmacology , Kidney Glomerulus/drug effects , Kidney Glomerulus/physiology , Adrenergic alpha-Agonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Animals , Calcimycin/pharmacology , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Catecholamines/physiology , Cells, Cultured , Chloride Channels/drug effects , Chlorides/metabolism , Colforsin/pharmacology , Cyclic AMP/metabolism , Epithelial Cells/chemistry , Epithelial Cells/physiology , Ionophores/pharmacology , Isoproterenol/pharmacology , Kidney Glomerulus/cytology , Mice , Mice, Transgenic , Nicardipine/pharmacology , Norepinephrine/pharmacology , Phenylephrine/pharmacology , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, beta-2/metabolism
9.
Kidney Int ; 52(3): 687-93, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9291188

ABSTRACT

In the glomerulus, angiotensin II (Ang II) reduces the ultrafiltration coefficient and enhances the filtration of macromolecules. During glomerular injury, inhibition of the renin-angiotensin system by angiotensin-converting-enzyme inhibitors reduces proteinuria and retards the progression to end-stage renal insufficiency. The mechanisms by which Ang II modulates glomerular function are still a matter of investigation. To study whether Ang II may regulate the cytosolic calcium activity ([Ca2+]i) in podocytes, these cells were propagated in short-term culture and the effect of Ang II was examined with the Fura-2 microfluorescence technique in single podocytes. The cellular identity of cultured podocytes was proven by the expression of WT-1 and pp44, specific antibodies against podocytes in vivo. Ang II led to a concentration-dependent, reversible and slow increase of [Ca2+]i with an EC50 of 3 nmol/liter Ang II (N = 229). Ten nmol/liter Ang II increased [Ca2+]i from 41 +/- 9 to 260 +/- 34 nmol/liter (N = 210). In a solution with an extracellular reduced Ca2+ concentration of 10 micromol/liter, Ang II-mediated [Ca2+]i increase was significantly reduced by 60 +/- 20% (N = 12), indicating that the [Ca2+]i increase was due to a Ca2+ influx from the extracellular space and a release of Ca2+ from intracellular stores. Flufenamate, an inhibitor of non-selective ion channels, significantly inhibited Ang II-mediated increase of [Ca2+]i (IC50 = 20 micromol/liter, N = 29), whereas the L-type Ca2+ channel blocker nicardipine even in high concentrations of > 1 micromol/liter had only a small inhibitory effect. The AT1 receptor antagonist losartan inhibited Ang II-mediated [Ca2+]i increase with an IC50 of about 0.3 nmol/liter (N = 35). The data suggest that Ang II increases [Ca2+]i in podocytes by an influx of Ca2+ through non-selective channels and by a release of Ca2+ from intracellular stores. The effect of Ang II is mediated via an AT1 receptor.


Subject(s)
Angiotensin II/pharmacology , Calcium/metabolism , Cytosol/metabolism , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Animals , Cells, Cultured , Extracellular Space/metabolism , Flufenamic Acid/pharmacology , Kidney Glomerulus/cytology , Nicardipine/pharmacology , Osmolar Concentration , Rats , Receptors, Angiotensin/physiology
10.
Kidney Int ; 52(1): 157-64, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9211358

ABSTRACT

The control of intracellular calcium activity ([Ca2+]i) and membrane voltage (Vm) play an important role in regulating functions of glomerular endothelial cells (GEC). We investigated the effect of extracellular ATP on the intracellular [Ca2+]i, Vm and ion conductances in GEC. ATP (100 mumol/liter) induced a rapid increase of [Ca2+]i in GEC from 20 +/- 6 to 442 +/- 84 nmol/liter, which was followed by a sustained Ca2+ plateau of 112 +/- 29 nmol/liter. In a bath solution with a low extracellular Ca2+ concentration the ATP-induced [Ca2+]i peak was still present, but the [Ca2+]i plateau was completely prevented. In 186 experiments with the patch clamp technique the addition of ATP (1 to 100 mumol/liter) to GEC induced a transient small hyperpolarization, which was followed by a depolarization. During the ATP-induced depolarization an increase of the whole cell conductance was found. The Ca2+ ionophore A23187 (10 mumol/liter) mimicked the effect of ATP on Vm. Reduction of the extracellular Ca2+ to 1 mumol/liter itself depolarized GEC reversibly from -88 +/- 2 to -60 +/- 12 mV and increased the ATP-induced depolarization to -18 +/- 3 mV. In the absence of Na+ in the bathing solution (replacement by NMDG+) ATP induced only an attenuated depolarization and no inward current was activated. Flufenamate (100 mumol/liter), a blocker of non-selective ion channels inhibited the ATP-induced depolarization of Vm significantly by 58 +/- 13%, whereas nicardipine (10 mumol/liter) or amiloride (10 mumol/liter) had no effect. Our data indicate that the resting Vm of GEC cells is almost completely dominated by K+ conductances and that ATP activates a Ca2+ dependent non-selective ion conductance in GEC.


Subject(s)
Calcium Channels/physiology , Ion Transport , Kidney Glomerulus/physiology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Amiloride/pharmacology , Animals , Calcimycin/pharmacology , Calcium/analysis , Calcium/physiology , Calcium Channel Blockers/pharmacology , Cattle , Cells, Cultured , Charybdotoxin/pharmacology , Chlorine/physiology , Endothelium/physiology , Flufenamic Acid/pharmacology , Ion Channels/physiology , Ionophores/pharmacology , Membrane Potentials , Nicardipine/pharmacology , Patch-Clamp Techniques , Potassium/analysis , Sodium/physiology , Thionucleotides/pharmacology , Uridine Triphosphate/pharmacology
11.
J Clin Invest ; 99(11): 2772-81, 1997 Jun 01.
Article in English | MEDLINE | ID: mdl-9169508

ABSTRACT

The aim of this study was to examine the effects of angiotensin II (Ang II) on cellular functions of rat podocytes (pod) in the intact freshly isolated glomerulus and in culture. Membrane voltage (Vm) and ion currents of pod were examined with the patch clamp technique in fast whole cell and whole cell nystatin configuration. Vm of pod was -38+/-1 mV (n = 86). Ang II led to a concentration-dependent depolarization of pod with an ED50 of 10(-8) mol/liter. In the presence of Ang II (10(-7) mol/liter, n = 20), pod depolarized by 7+/-1 mV. In an extracellular solution with a reduced Cl- concentration of 32 mmol/liter, the effect of Ang II on Vm was significantly increased to 14+/-4 mV (n = 8). The depolarization induced by Ang II was neither inhibited in an extracellular Na+-free solution nor in a solution with a reduced extracellular Ca2+ (down to 1 micromol/liter). Like Ang II, the calcium ionophore A23187 (10(-5) mol/liter, n = 9) depolarized pod by 10+/-2 mV, whereas forskolin (10(-5) mol/liter), 8-(4-chlorophenylthio)-cAMP and N2,2'-o-dibutyryl-cGMP (both 5 x 10(-4) mol/liter) did not alter Vm of pod. The angiotensin 1 receptor antagonist losartan (10(-7) mol/liter) completely inhibited the Ang II-induced (10(-7) mol/liter) depolarization (n = 5). Like pod in the glomerulus, pod in short term culture depolarized in response to Ang II (10(-8) mol/liter, n = 5). Our results suggest that Ang II depolarizes podocytes directly by opening a Cl- conductance. The activation of this ion conductance is mediated by an AT1 receptor and may be regulated by the intracellular Ca2+ activity.


Subject(s)
Angiotensin II/pharmacology , Kidney Glomerulus/drug effects , Vasoconstrictor Agents/pharmacology , Animals , Cells, Cultured , Female , Ion Transport/drug effects , Kidney Glomerulus/cytology , Male , Membrane Potentials/drug effects , Microscopy, Electron , Rats , Rats, Wistar
12.
J Auton Pharmacol ; 16(6): 389-91, 1996 Dec.
Article in English | MEDLINE | ID: mdl-9131423

ABSTRACT

1. Glomerular endothelial cells form the inner part of the filtration barrier and are involved in pathophysiological processes in the glomerulum. New techniques for culturing glomerular endothelial cells have been established recently. The effect of extracellular ATP on membrane voltage and intracellular calcium activity was examined in bovine glomerular endothelial cells (GEC) in culture. 2. Membrane voltage was measured with the patch clamp technique in the fast whole cell configuration. GEC possess a stable membrane voltage of -88 mV. ATP induced a small transient hyperpolarization, which was followed by a depolarization. The ATP-induced depolarization was significantly inhibited by flufenamate, a blocker of non-selective ion channels. 3. The intracellular calcium activity [Ca2+]i was measured in single cells with the fura-2 technique. ATP stimulated an increase of [Ca2+]i. The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free solution, whereas the plateau was inhibited. 4. The order of potency of different purine nucleotides in stimulating [Ca2+]i and inositol formation was UTP = ATP > ATP-gamma-S > 2-methylthio ATP > [alpha,beta-CH2]ATP. 5. The data indicate that ATP regulates membrane voltage and [Ca2+]i in glomerular endothelial cells by a P2y2 receptor.


Subject(s)
Adenosine Triphosphate/physiology , Kidney Glomerulus/physiology , Adenosine Triphosphate/pharmacology , Animals , Calcium/metabolism , Cattle , Cells, Cultured , Endothelium/cytology , Endothelium/metabolism , Endothelium/physiology , In Vitro Techniques , Kidney Glomerulus/metabolism , Membrane Potentials , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...