Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 6(10): 1423-1437, 2022 10.
Article in English | MEDLINE | ID: mdl-35941205

ABSTRACT

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.


Subject(s)
Biodiversity , Forests , Soil , Trees
2.
Glob Chang Biol ; 25(6): 1905-1921, 2019 06.
Article in English | MEDLINE | ID: mdl-30761695

ABSTRACT

Prediction of ecosystem response to global environmental change is a pressing scientific challenge of major societal relevance. Many ecosystems display nonlinear responses to environmental change, and may even undergo practically irreversible 'regime shifts' that initiate ecosystem collapse. Recently, early warning signals based on spatiotemporal metrics have been proposed for the identification of impending regime shifts. The rapidly increasing availability of remotely sensed data provides excellent opportunities to apply such model-based spatial early warning signals in the real world, to assess ecosystem resilience and identify impending regime shifts induced by global change. Such information would allow land-managers and policy makers to interfere and avoid catastrophic shifts, but also to induce regime shifts that move ecosystems to a desired state. Here, we show that the application of spatial early warning signals in real-world landscapes presents unique and unexpected challenges, and may result in misleading conclusions when employed without careful consideration of the spatial data and processes at hand. We identify key practical and theoretical issues and provide guidelines for applying spatial early warning signals in heterogeneous, real-world landscapes based on literature review and examples from real-world data. Major identified issues include (1) spatial heterogeneity in real-world landscapes may enhance reversibility of regime shifts and boost landscape-level resilience to environmental change (2) ecosystem states are often difficult to define, while these definitions have great impact on spatial early warning signals and (3) spatial environmental variability and socio-economic factors may affect spatial patterns, spatial early warning signals and associated regime shift predictions. We propose a novel framework, shifting from an ecosystem perspective towards a landscape approach. The framework can be used to identify conditions under which resilience assessment with spatial remotely sensed data may be successful, to support well-informed application of spatial early warning signals, and to improve predictions of ecosystem responses to global environmental change.


Subject(s)
Ecosystem , Environment , Models, Theoretical , Spatial Analysis
3.
PLoS One ; 13(11): e0207151, 2018.
Article in English | MEDLINE | ID: mdl-30418996

ABSTRACT

BACKGROUND: European forests have a long record of management. However, the diversity of the current forest management across nations, tree species and owners, is hardly understood. Often when trying to simulate future forest resources under alternative futures, simply the yield table style of harvesting is applied. It is now crucially important to come to grips with actual forest management, now that demand for wood is increasing and the EU Land Use, Land Use Change and Forestry Regulation has been adopted requiring 'continuation of current management practices' as a baseline to set the Forest Reference Level carbon sink. METHODS: Based on a large dataset of 714,000 re-measured trees in National Forest inventories from 13 regions, we are now able to analyse actual forest harvesting. CONCLUSIONS: From this large set of repeated tree measurements we can conclude that there is no such thing as yield table harvesting in Europe. We found general trends of increasing harvest probability with higher productivity of the region and the species, but with important deviations related to local conditions like site accessibility, state of the forest resource (like age), specific subsidies, importance of other forest services, and ownership of the forest. As a result, we find a huge diversity in harvest regimes. Over the time period covered in our inventories, the average harvest probability over all regions was 2.4% yr-1 (in number of trees) and the mortality probability was 0.4% yr-1. Our study provides underlying and most actual data that can serve as a basis for quantifying 'continuation of current forest management'. It can be used as a cornerstone for the base period as required for the Forest Reference Level for EU Member States.


Subject(s)
Forestry , Ownership , Trees , Conservation of Natural Resources , Europe , Forestry/methods
4.
Science ; 354(6309)2016 10 14.
Article in English | MEDLINE | ID: mdl-27738143

ABSTRACT

The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.


Subject(s)
Biodiversity , Conservation of Natural Resources , Forests , Trees/physiology , Climate Change , Extinction, Biological
5.
Glob Chang Biol ; 22(7): 2526-39, 2016 07.
Article in English | MEDLINE | ID: mdl-26668087

ABSTRACT

Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data.


Subject(s)
Carbon Cycle , Forests , Carbon/analysis , Conservation of Natural Resources , Europe
6.
Proc Biol Sci ; 282(1807): 20150424, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25904671

ABSTRACT

Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatures of Lévy behaviour in the search movement of mud snails (Hydrobia ulvae) based on a novel, direct assessment of movement properties in an experimental set-up using different food distributions. Our experimental data uncovered clusters of small movement steps alternating with long moves independent of food encounter and landscape complexity. Moreover, size distributions of these clusters followed truncated power laws. These two findings are characteristic signatures of mechanisms underlying inherent Lévy-like movement. Thus, our study provides clear experimental evidence that such multi-scale movement is an inherent behaviour rather than resulting from the animal interacting with its environment.


Subject(s)
Snails/physiology , Animals , Ecosystem , Feeding Behavior , Models, Statistical , Movement
7.
Proc Biol Sci ; 281(1774): 20132605, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24225464

ABSTRACT

Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.


Subject(s)
Bivalvia/physiology , Movement , Animals , Behavior, Animal , Ecosystem , Environment , Population Density , Population Dynamics
8.
PLoS One ; 8(1): e54584, 2013.
Article in English | MEDLINE | ID: mdl-23365675

ABSTRACT

Human practices in managed landscapes may often adversely affect aquatic biota, such as aquatic insects. Dispersal is often the limiting factor for successful re-colonization and recovery of stressed habitats. Therefore, in this study, we evaluated the effects of landscape permeability, assuming a combination of riparian vegetation (edge permeability) and other vegetation (landscape matrix permeability), and distance between waterbodies on the colonization and recovery potential of weakly flying insects. For this purpose, we developed two models, a movement and a population model of the non-biting midge, Chironomus riparius, an aquatic insect with weak flying abilities. With the movement model we predicted the outcome of dispersal in a landscape with several linear water bodies (ditches) under different assumptions regarding landscape-dependent movement. Output from the movement model constituted the probabilities of encountering another ditch and of staying in the natal ditch or perishing in the landscape matrix, and was used in the second model. With this individual-based model of midge populations, we assessed the implications for population persistence and for recovery potential after an extreme stress event. We showed that a combination of landscape attributes from the movement model determines the fate of dispersing individuals and, once extrapolated to the population level, has a big impact on the persistence and recovery of populations. Population persistence benefited from low edge permeability as it reduced the dispersal mortality which was the main factor determining population persistence and viability. However, population recovery benefited from higher edge permeability, but this was conditional on the low effective distance that ensured fewer losses in the landscape matrix. We discuss these findings with respect to possible landscape management scenarios.


Subject(s)
Animal Distribution/physiology , Aquatic Organisms/physiology , Chironomidae/physiology , Population Dynamics/statistics & numerical data , Animals , Ecosystem , Humans , Models, Biological , Movement
9.
PLoS One ; 7(9): e45505, 2012.
Article in English | MEDLINE | ID: mdl-23029059

ABSTRACT

BACKGROUND: Economic impact assessment of invasive species requires integration of information on pest entry, establishment and spread, valuation of assets at risk and market consequences at large spatial scales. Here we develop such a framework and demonstrate its application to the pinewood nematode, Bursaphelenchus xylophilus, which threatens the European forestry industry. The effect of spatial resolution on the assessment result is analysed. METHODOLOGY/PRINCIPAL FINDINGS: Direct economic impacts resulting from wood loss are computed using partial budgeting at regional scale, while impacts on social welfare are computed by a partial equilibrium analysis of the round wood market at EU scale. Substantial impacts in terms of infested stock are expected in Portugal, Spain, Southern France, and North West Italy but not elsewhere in EU in the near future. The cumulative value of lost forestry stock over a period of 22 years (2008-2030), assuming no regulatory control measures, is estimated at €22 billion. The greatest yearly loss of stock is expected to occur in the period 2014-2019, with a peak of three billion euros in 2016, but stabilizing afterwards at 300-800 million euros/year. The reduction in social welfare follows the loss of stock with considerable delay because the yearly harvest from the forest is only 1.8%. The reduction in social welfare for the downstream round wood market is estimated at €218 million in 2030, whereby consumers incur a welfare loss of €357 million, while producers experience a €139 million increase, due to higher wood prices. The societal impact is expected to extend to well beyond the time horizon of the analysis, and long after the invasion has stopped. CONCLUSIONS/SIGNIFICANCE: Pinewood nematode has large economic consequences for the conifer forestry industry in the EU. A change in spatial resolution affected the calculated directed losses by 24%, but did not critically affect conclusions.


Subject(s)
Introduced Species , Models, Economic , Nematoda/physiology , Trees/parasitology , Wood/parasitology , Animals , Ecosystem , Forestry
10.
Environ Pollut ; 163: 91-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22325436

ABSTRACT

In agroecosystems, organisms may regularly be exposed to anthropogenic stressors, e.g. pesticides. Species' sensitivity to stress depends on toxicity, life-history, and landscape structure. We developed an individual-based model of an isopod, Asellus aquaticus, to explore how timing of stress events affects population dynamics in a seasonal environment. Furthermore, we tested the relevance of habitat connectivity and spatial distribution of stress for the recovery of a local and total population. The simulation results indicated that population recovery is mainly driven by reproductive periods. Furthermore, high habitat connectivity led to faster recovery both for local and total populations. However, effects of landscape structure disappeared for homogeneously stressed populations, where local survivors increased recovery rate. Finally, local populations recovered faster, implying that assessing recovery in the field needs careful consideration of spatial scale for sampling. We emphasize the need for a coherent definition of recovery for more relevant ecosystem risk assessment and management.


Subject(s)
Ecosystem , Isopoda/growth & development , Adaptation, Physiological , Animals , Aquatic Organisms , Insecticides/toxicity , Isopoda/drug effects , Isopoda/physiology , Models, Biological , Population Growth , Stress, Physiological , Water Pollutants, Chemical/toxicity
11.
Am Nat ; 174(1): 102-10, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19422320

ABSTRACT

The concentrations of resources in forage are not perfectly balanced to the needs of an animal, and food species differ in these concentrations. Under many circumstances, animals should thus forage on multiple food species to attain the maximum and most balanced intake of several resources. In this article we present a model to extend optimal foraging theory to incorporate concurrent foraging for multiple resources from several food species. A balancing of resources is achieved by representing the amount of a resource as the time during which it is used. Optimization is considered at two hierarchical levels: the time spent in a patch and the proportion of patches of each food species included in the foraging path. Our model results show that the balancing of resource intake can be achieved at the level of the foraging path, while the maximization of intake can be realized at the nested patch level. The choice for a food species should be dependent on the differences in intake and resource ratios between the food species. Under free choice of food species, the optimal patch residence time is subject not to differences between patches but to the local intake rate.


Subject(s)
Ecosystem , Food Chain , Models, Biological , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...