Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 19(1): e1011101, 2023 01.
Article in English | MEDLINE | ID: mdl-36706161

ABSTRACT

Transcriptional silencing of latent HIV-1 proviruses entails complex and overlapping mechanisms that pose a major barrier to in vivo elimination of HIV-1. We developed a new latency CRISPR screening strategy, called Latency HIV-CRISPR which uses the packaging of guideRNA-encoding lentiviral vector genomes into the supernatant of budding virions as a direct readout of factors involved in the maintenance of HIV-1 latency. We developed a custom guideRNA library targeting epigenetic regulatory genes and paired the screen with and without a latency reversal agent-AZD5582, an activator of the non-canonical NFκB pathway-to examine a combination of mechanisms controlling HIV-1 latency. A component of the Nucleosome Acetyltransferase of H4 histone acetylation (NuA4 HAT) complex, ING3, acts in concert with AZD5582 to activate proviruses in J-Lat cell lines and in a primary CD4+ T cell model of HIV-1 latency. We found that the knockout of ING3 reduces acetylation of the H4 histone tail and BRD4 occupancy on the HIV-1 LTR. However, the combination of ING3 knockout accompanied with the activation of the non-canonical NFκB pathway via AZD5582 resulted in a dramatic increase in initiation and elongation of RNA Polymerase II on the HIV-1 provirus in a manner that is nearly unique among all cellular promoters.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Histones/metabolism , Nuclear Proteins/metabolism , HIV-1/physiology , Transcription Factors/metabolism , Virus Latency/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , HIV Seropositivity/genetics , Proviruses/genetics , CD4-Positive T-Lymphocytes , Homeodomain Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Cell Cycle Proteins/metabolism
2.
Nat Struct Mol Biol ; 28(5): 413-417, 2021 05.
Article in English | MEDLINE | ID: mdl-33927388

ABSTRACT

Certain large DNA viruses, including those in the Marseilleviridae family, encode histones. Here we show that fused histone pairs Hß-Hα and Hδ-Hγ from Marseillevirus are structurally analogous to the eukaryotic histone pairs H2B-H2A and H4-H3. These viral histones form 'forced' heterodimers, and a heterotetramer of four such heterodimers assembles DNA to form structures virtually identical to canonical eukaryotic nucleosomes.


Subject(s)
DNA Viruses , DNA , Nucleosomes/metabolism , DNA/chemistry , DNA/metabolism , DNA Viruses/genetics , DNA Viruses/metabolism , Histones/chemistry , Histones/metabolism , Protein Binding , Protein Structural Elements , Protein Structure, Tertiary
3.
Mol Carcinog ; 49(1): 94-103, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19777566

ABSTRACT

Mouse models of intestinal tumors have advanced our understanding of the role of gene mutations in colorectal malignancy. However, the utility of these systems for studying the role of epigenetic alterations in intestinal neoplasms remains to be defined. Consequently, we assessed the role of aberrant DNA methylation in the azoxymethane (AOM) rodent model of colon cancer. AOM induced tumors display global DNA hypomethylation, which is similar to human colorectal cancer. We next assessed the methylation status of a panel of candidate genes previously shown to be aberrantly methylated in human cancer or in mouse models of malignant neoplasms. This analysis revealed different patterns of DNA methylation that were gene specific. Zik1 and Gja9 demonstrated cancer-specific aberrant DNA methylation, whereas, Cdkn2a/p16, Igfbp3, Mgmt, Id4, and Cxcr4 were methylated in both the AOM tumors and normal colon mucosa. No aberrant methylation of Dapk1 or Mlt1 was detected in the neoplasms, but normal colon mucosa samples displayed methylation of these genes. Finally, p19(Arf), Tslc1, Hltf, and Mlh1 were unmethylated in both the AOM tumors and normal colon mucosa. Thus, aberrant DNA methylation does occur in AOM tumors, although the frequency of aberrantly methylated genes appears to be less common than in human colorectal cancer. Additional studies are necessary to further characterize the patterns of aberrantly methylated genes in AOM tumors.


Subject(s)
Colonic Neoplasms/genetics , DNA Methylation , Disease Models, Animal , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Azoxymethane , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Cell Adhesion Molecule-1 , Cell Adhesion Molecules , Colonic Neoplasms/chemically induced , Connexins/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Death-Associated Protein Kinases , Humans , Immunoglobulins/genetics , Inhibitor of Differentiation Proteins/genetics , Insulin-Like Growth Factor Binding Protein 3/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Membrane Proteins/genetics , Mice , MutL Protein Homolog 1 , Nuclear Proteins/genetics , Receptors, CXCR4/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Gap Junction delta-2 Protein
4.
Epigenetics Chromatin ; 2(1): 7, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19505295

ABSTRACT

BACKGROUND: DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Most methods to scan the genome in different tissues for differentially methylated sites have focused on the methylation of CpGs in CpG islands, which are concentrations of CpGs often associated with gene promoters. RESULTS: Here, we use a methylation profiling strategy that is predominantly responsive to methylation differences outside of CpG islands. The method compares the yield from two samples of size-selected fragments generated by a methylation-sensitive restriction enzyme. We then profile nine different normal tissues from two human donors relative to spleen using a custom array of genomic clones covering the euchromatic portion of human chromosome 1 and representing 8% of the human genome. We observe gross regional differences in methylation states across chromosome 1 between tissues from the same individual, with the most striking differences detected in the comparison of cerebellum and spleen. Profiles of the same tissue from different donors are strikingly similar, as are the profiles of different lobes of the brain. Comparing our results with published gene expression levels, we find that clones exhibiting extreme ratios reflecting low relative methylation are statistically enriched for genes with high expression ratios, and vice versa, in most pairs of tissues examined. CONCLUSION: The varied patterns of methylation differences detected between tissues by our methylation profiling method reinforce the potential functional significance of regional differences in methylation levels outside of CpG islands.

SELECTION OF CITATIONS
SEARCH DETAIL
...