Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18522, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898645

ABSTRACT

Memory is fleeting. To avoid information loss, humans need to recode verbal stimuli into chunks of limited duration, each containing multiple words. Chunk duration may also be limited neurally by the wavelength of periodic brain activity, so-called neural oscillations. While both cognitive and neural constraints predict some degree of behavioral regularity in processing, this remains to be shown. Our analysis of self-paced reading data from 181 participants reveals periodic patterns at a frequency of [Formula: see text] 2 Hz. We defined multi-word chunks by using a computational formalization based on dependency annotations and part-of-speech tags. Potential chunk outputs were first generated from the computational formalization and the final chunk outputs were selected based on normalized pointwise mutual information. We show that behavioral periodicity is time-aligned to multi-word chunks, suggesting that the multi-word chunks generated from local dependency clusters may minimize memory demands. This is the first evidence that sentence processing behavior is periodic, consistent with a role of both memory constraints and endogenous electrophysiological rhythms in the formation of chunks during language comprehension.


Subject(s)
Language , Memory , Humans , Periodicity
3.
J Neurosci ; 43(24): 4461-4469, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37208175

ABSTRACT

Neural oscillations are thought to support speech and language processing. They may not only inherit acoustic rhythms, but might also impose endogenous rhythms onto processing. In support of this, we here report that human (both male and female) eye movements during naturalistic reading exhibit rhythmic patterns that show frequency-selective coherence with the EEG, in the absence of any stimulation rhythm. Periodicity was observed in two distinct frequency bands: First, word-locked saccades at 4-5 Hz display coherence with whole-head theta-band activity. Second, fixation durations fluctuate rhythmically at ∼1 Hz, in coherence with occipital delta-band activity. This latter effect was additionally phase-locked to sentence endings, suggesting a relationship with the formation of multi-word chunks. Together, eye movements during reading contain rhythmic patterns that occur in synchrony with oscillatory brain activity. This suggests that linguistic processing imposes preferred processing time scales onto reading, largely independent of actual physical rhythms in the stimulus.SIGNIFICANCE STATEMENT The sampling, grouping, and transmission of information are supported by rhythmic brain activity, so-called neural oscillations. In addition to sampling external stimuli, such rhythms may also be endogenous, affecting processing from the inside out. In particular, endogenous rhythms may impose their pace onto language processing. Studying this is challenging because speech contains physical rhythms that mask endogenous activity. To overcome this challenge, we turned to naturalistic reading, where text does not require the reader to sample in a specific rhythm. We observed rhythmic patterns of eye movements that are synchronized to brain activity as recorded with EEG. This rhythmicity is not imposed by the external stimulus, which indicates that rhythmic brain activity may serve as a pacemaker for language processing.


Subject(s)
Eye-Tracking Technology , Reading , Male , Humans , Female , Electroencephalography , Periodicity , Language
4.
Cereb Cortex ; 31(9): 4289-4299, 2021 07 29.
Article in English | MEDLINE | ID: mdl-33949654

ABSTRACT

Speech is transient. To comprehend entire sentences, segments consisting of multiple words need to be memorized for at least a while. However, it has been noted previously that we struggle to memorize segments longer than approximately 2.7 s. We hypothesized that electrophysiological processing cycles within the delta band (<4 Hz) underlie this time constraint. Participants' EEG was recorded while they listened to temporarily ambiguous sentences. By manipulating the speech rate, we aimed at biasing participants' interpretation: At a slow rate, segmentation after 2.7 s would trigger a correct interpretation. In contrast, at a fast rate, segmentation after 2.7 s would trigger a wrong interpretation and thus an error later in the sentence. In line with the suggested time constraint, the phase of the delta-band oscillation at the critical point in the sentence mirrored segmentation on the level of single trials, as indicated by the amplitude of the P600 event-related brain potential (ERP) later in the sentence. The correlation between upstream delta-band phase and downstream P600 amplitude implies that segmentation took place when an underlying neural oscillator had reached a specific angle within its cycle, determining comprehension. We conclude that delta-band oscillations set an endogenous time constraint on segmentation.


Subject(s)
Brain/physiology , Delta Rhythm/physiology , Evoked Potentials, Auditory/physiology , Linguistics/methods , Speech Perception/physiology , Speech/physiology , Acoustic Stimulation/methods , Adult , Biological Clocks/physiology , Female , Humans , Male , Young Adult
5.
Child Dev ; 90(2): 610-622, 2019 03.
Article in English | MEDLINE | ID: mdl-28782799

ABSTRACT

In two experiments, one hundred and sixty-two 6- to 8-year-olds were asked to reason counterfactually about events with different causal structures. All events involved overdetermined outcomes in which two different causal events led to the same outcome. In Experiment 1, children heard stories with either an ambiguous causal relation between events or causally unrelated events. Children in the causally unrelated version performed better than chance and better than those in the ambiguous condition. In Experiment 2, children heard stories in which antecedent events were causally connected or causally disconnected. Eight-year-olds performed above chance in both conditions, whereas 6-year-olds performed above chance only in the connected condition. This work provides the first evidence that children can reason counterfactually in causally overdetermined contexts by age 8.


Subject(s)
Child Development/physiology , Thinking/physiology , Child , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...