Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 11(1): 12078, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103661

ABSTRACT

The emergence of e-cigarettes on the consumer market led to a tremendous rise in e-cigarette consumption among adolescents in the United States. The success of JUUL and other pod systems was linked to its high nicotine delivery capacity. In compliance with the European Tobacco Product directive, liquid nicotine contents in the European JUUL variants are limited to 20 mg/mL or below. A short time after launching the initial version in Europe, JUUL pods have been modified in terms of the wick material used. This modification has been demonstrated previously to lead to an elevated aerosol generation, consequently, to a larger amount of nicotine per puff generated. The present study was designed to assess whether the mentioned differences between the "initial" and "modified" JUUL versions may cause a significant difference during consumption, and how nicotine delivery compares with tobacco cigarettes. In this single-center three-arm study, nicotine pharmacokinetics and influence on urge to smoke/vape were compared for tobacco cigarettes, the "initial" version of the European JUUL, and the "modified" version of the European JUUL. Participants, 15 active smokers and 17 active e-cigarette users, were instructed to consume their study product according to a pre-directed puffing protocol. Venous blood was sampled for nicotine analysis to cover the acute phase and the first 30 min after starting. Nicotine delivery and the reduction of urge to smoke/vape upon usage of both European JUUL variants were lower in comparison to tobacco cigarettes. This suggests a lower addictive potential. Modification of the pod design did not result in significant differences at the first ten puffs, as confirmed by a vaping machine experiment. Apparently, the limitations by the initially used wick material only come into effect after longer usage time.


Subject(s)
Craving/drug effects , Electronic Nicotine Delivery Systems , Nicotine , Vaping/blood , Adolescent , Adult , Female , Humans , Male , Middle Aged , Nicotine/administration & dosage , Nicotine/pharmacokinetics
2.
Arch Toxicol ; 94(6): 1985-1994, 2020 06.
Article in English | MEDLINE | ID: mdl-32189038

ABSTRACT

The popularity and the high nicotine content of the American pod e-cigarette JUUL have raised many concerns. To comply with European law, the nicotine concentration in the liquids of the European version, which has been recently released on the market, is limited to below 20 mg/mL. This limit can possibly be circumvented by technological adjustments that increase vaporization and consequently, elevate nicotine delivery. In this study, we compare vapor generation and nicotine delivery of the initial European version, a modified European version, and the original American high-nicotine variant using a machine vaping set-up. Additionally, benzoic acid and carbonyl compounds are quantified in the aerosol. Further, concentrations of nicotine, benzoic acid, propylene glycol, and glycerol, along with the density and pH value of JUUL e-liquids have been assessed. Whereas the initial European version did not compensate for the low nicotine content in the liquid, we provide evidence for an increased vaporization by the modified European version. As a consequence, nicotine delivery per puff approximates the American original. Notably, this is not associated with an increased generation of carbonyl compounds. Our data suggest a similar addictiveness of the enhanced European version and the original American product.


Subject(s)
E-Cigarette Vapor/analysis , Electronic Nicotine Delivery Systems , Nicotine/analysis , Nicotinic Agonists/analysis , Vaping , Aerosols , Consumer Product Safety , E-Cigarette Vapor/adverse effects , Europe , Humans , Nicotine/adverse effects , Nicotinic Agonists/adverse effects , Risk Assessment , Vaping/adverse effects
3.
Front Public Health ; 7: 287, 2019.
Article in English | MEDLINE | ID: mdl-31649912

ABSTRACT

The health risks of tobacco smoking have been documented in numerous studies and smoking rates have declined in developed countries over the last 50 years. Today, we know that cigarette smoking is the major cause of preventable deaths due to tobacco smoke induced diseases. As a consequence of an increased awareness of smoking-related health risks, heated tobacco products (HTPs) are marketed as reduced toxicant alternatives to conventional tobacco products. Manufacturers claim that levels of toxicants and hazardous compounds are significantly reduced, implying that inhalation of the modified aerosol is less harmful compared to conventional cigarettes. In this manuscript, previous assessments of HTPs are briefly summarized, including a short discussion on challenges with the adaption of standard analytical methods used for tobacco smoke. The reliability of analytical data is important for risk assessment approaches that are based on reduced toxicant exposure. In order to assess a putative reduction of health risks, an integrated study design is required that should include clinical studies and epidemiology data. One manufacturer applied for a classification as a Modified Risk Tobacco Product (MRTP) in the United States, based on extensive toxicological studies that have also been published. However, data are not yet sufficient for a reliable assessment or recognition of putatively reduced health risks. Challenges regarding a classification in Europe are also discussed briefly in this review.

4.
Article in German | MEDLINE | ID: mdl-30284624

ABSTRACT

Increased tobacco control measures in recent years have directed the tobacco industry to develop alternative tobacco products, such as "heat not burn" (HnB) tobacco devices that are implied to be less hazardous than conventional cigarettes. There are extensive studies from manufacturers available, which show that the emissions of HnB tobacco devices have significantly lower levels of harmful substances compared to conventional cigarettes. In addition, manufacturers have published studies to investigate whether switching from a conventional tobacco cigarette to the HnB product reduces possible health risks.The purpose of this report is to review current studies by manufacturers and independent institutions as well as to discuss possible reduced health hazards.The German Federal Institute for Risk Assessment (BfR) has carried out its own studies of selected analytes in the emissions of one HnB product confirming the lower levels of harmful substances in the emissions. The results are consistent with data from other independent studies. The nicotine content in the emissions is in the same range as the nicotine emissions of conventional cigarettes, which suggests a comparable addictiveness and dependence potential. Manufacturers have reported mutagenic effects of emissions by HnB tobacco devices that, however, are considerably weaker compared to conventional cigarettes. Nevertheless, the use of the HnB tobacco product remains associated with health risks.Switching from conventional cigarettes to tobacco heaters can significantly reduce the consumer's exposure to harmful substances. However, this article also illustrates that it is still unclear to what extent the reduced levels lead to lowered health risks. Therefore more independent studies, but also long-term studies, are needed.


Subject(s)
Tobacco Industry , Tobacco Products , Germany , Hot Temperature , Nicotiana
5.
Arch Toxicol ; 92(6): 2145-2149, 2018 06.
Article in English | MEDLINE | ID: mdl-29730817

ABSTRACT

Consumers of combustible cigarettes are exposed to many different toxicologically relevant substances associated with negative health effects. Newly developed "heat not burn" (HNB) devices are able to contain lower levels of Harmful and Potentially Harmful Constituents (HPHCs) in their emissions compared to tobacco cigarettes. However, to develop toxicological risk assessment strategies, further independent and standardized investigations addressing HPHC reduction need to be done. Therefore, we generated emissions of a commercially available HNB product following the Health Canada Intense smoking regimen and analyzed total particulate matter (TPM), nicotine, water, aldehydes, and other volatile organic compounds (VOCs) that are major contributors to health risk. We show that nicotine yield is comparable to typical combustible cigarettes, and observe substantially reduced levels of aldehydes (approximately 80-95%) and VOCs (approximately 97-99%). Emissions of TPM and nicotine were found to be inconsistent during the smoking procedure. Our study confirms that levels of major carcinogens are markedly reduced in the emissions of the analyzed HNB product in relation to the conventional tobacco cigarettes and that monitoring these emissions using standardized machine smoking procedures generates reliable and reproducible data which provide a useful basis to assess exposure and human health risks.


Subject(s)
Air Pollutants/adverse effects , Nicotine/adverse effects , Particulate Matter/adverse effects , Smoke/adverse effects , Tobacco Products , Volatile Organic Compounds/adverse effects , Air Pollutants/analysis , Canada , Hot Temperature , Nicotine/analysis , Particulate Matter/analysis , Risk Assessment , Smoke/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...