Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biol Int ; 45(8): 1676-1684, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33764610

ABSTRACT

During myoblast differentiation, mitochondria undergo numerous changes that are necessary for the progression of the myogenic program. Notably, we previously showed that alteration in mitochondrial activity was able to control the expression of keys regulator of cell cycle withdrawal and terminal differentiation. Here, we assessed whether inhibition of one of the respiratory complexes was a key factor in the regulation of myogenic differentiation in C2C12 cells, and was associated with alteration in reactive oxygen species (ROS) production. C2C12 cells were treated from proliferation to differentiation with specific inhibitors of mitochondrial complexes at a concentration that were inhibiting respiration but not altering cell morphology. Proliferation was significantly repressed with inhibition of complexes I, II, and III, or mitochondrial protein synthesis (using Chloramphenicol treatment), while complex IV inhibition did not alter myoblast proliferation compared to control cells. Moreover, inhibition of complexes I and II altered cell cycle regulators, with p21 protein expression upregulated since proliferation and p27 protein expression reduced at differentiation. Myotubes formation and myogenin expression were blunted with complexes I and II inhibitors while MyoD protein expression was maintained, suggesting an alteration in its transcriptional activity. Finally, a decrease in overall ROS production was observed with continuous inhibition of mitochondrial complexes I-IV. In summary, our data provide evidence that complexes I and II may be the primary regulators of C2C12 myogenic differentiation. This occurs through specific regulation of myogenic rather than cell cycle regulators expression and ROS production at mitochondrial rather than cell level.


Subject(s)
Cell Differentiation/physiology , Electron Transport Complex II/metabolism , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Myoblasts/metabolism , Animals , Cell Line , Electron Transport/physiology , Mice , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...