Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Sports Med ; 23(6): 397-402, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12215957

ABSTRACT

The aim of the present study was to investigate the effects of age and recovery duration on the time course of cycling peak power and blood lactate concentration ([La]) during repeated bouts of short-term high-intensity exercise. Eleven prepubescent boys (9.6 +/- 0.7 yr), nine pubescent boys (15.0 +/- 0.7 yr) and ten men (20.4 +/- 0.8 yr) performed ten consecutive 10 s cycling sprints separated by either 30 s (R30), 1 min (R1), or 5 min (R5) passive recovery intervals against a friction load corresponding to 50 % of their optimal force (50 % Ffopt). Peak power produced at 50 % Ffopt (PP50) was calculated at each sprint including the flywheel inertia of the bicycle. Arterialized capillary blood samples were collected at rest and during the sprint exercises to measure the time course of [La]. In the prepubescent boys, whatever recovery intervals, PP50 remained unchanged during the ten 10 s sprint exercises. In the pubescent boys, PP50 decreased significantly by 18.5 % (p < 0.001) with R30 and by 15.3 % (p < 0.01) with R1 from the first to the tenth sprint but remained unchanged with R5. In the men, PP50 decreased respectively by 28.5 % (p < 0.001) and 11.3 % (p < 0.01) with R30 and R1 and slightly diminished with R5. For each recovery interval, the increase in blood [La] over the ten sprints was significantly lower in the prepubescent boys compared with the pubescent boys and the men. To conclude, the prepubescent boys sustained their PP50 during the ten 10 s sprint exercises with only 30 s recovery intervals. In contrast, the pubescent boys and the men needed 5 min recovery intervals. It was suggested that the faster recovery of PP50 in the prepubescent boys was due to their lower muscle glycolytic activity and their higher muscle oxidative capacity allowing a faster resynthesis in phosphocreatine.


Subject(s)
Aging/metabolism , Bicycling , Physical Exertion/physiology , Adolescent , Adult , Aging/blood , Child , Fatigue , Humans , Lactic Acid/blood , Male , Oxygen Consumption
2.
J Appl Physiol (1985) ; 92(2): 479-85, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11796654

ABSTRACT

The aim of this study was to investigate the acid-base balance during repeated cycling sprints in children and adults. Eleven boys (9.6 +/- 0.7 yr) and ten men (20.4 +/- 0.8 yr) performed ten 10-s sprints on a cycle ergometer separated by 30-s passive recovery intervals. To measure the time course of lactate ([La]), hydrogen ions ([H(+)]), bicarbonate ions ([HCO(3)(-)]), and base excess concentrations and the arterial partial pressure of CO(2), capillary blood samples were collected at rest and after each sprint. Ventilation and CO(2) output were continuously measured. After the 10th sprint, concentrations of boys vs. men were as follows: [La], 8.5 +/- 2.1 vs. 15.4 +/- 2.0 mmol/l; [H(+)], 43.8 +/- 1.3 vs. 66.9 +/- 9.9 nmol/l (P < 0.001). Significant correlations showed that, for a given [La], [H(+)] was lower in the boys compared with the men (P < 0.001). Significant relationships also indicated that, for a given [La], [HCO(3)(-)] and base excess concentration were similar in the boys compared with the men. Moreover, significant relationships revealed that, for a given [H(+)] or [HCO(3)(-)], arterial partial pressure of CO(2) was lower in the boys compared with the men (P < 0.001). The ventilation-to-CO(2) output ratio was higher in the boys during the first five rest intervals and was then higher in the men during the last five sprints. To conclude, during repeated sprints, the ventilatory regulation related to the change in acid-base balance induced by lactic acidosis was more important during the first rest intervals in the boys compared with the men.


Subject(s)
Acid-Base Equilibrium , Aging/metabolism , Bicycling/physiology , Adult , Arteries , Bicarbonates/blood , Blood/metabolism , Carbon Dioxide/blood , Child , Humans , Hydrogen-Ion Concentration , Lactic Acid/blood , Male , Partial Pressure , Pulmonary Gas Exchange
SELECTION OF CITATIONS
SEARCH DETAIL
...