Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Eukaryot Microbiol ; 55(1): 44-50, 2008.
Article in English | MEDLINE | ID: mdl-18251802

ABSTRACT

Abiotic factors are thought to be primarily responsible for the loss of bacteriophages from the environment, but ingestion of phages by heterotrophs may also play a role in their elimination. Tetrahymena thermophila has been shown to ingest and inactivate bacteriophage T4 in co-incubation experiments. In this study, other Tetrahymena species were co-incubated with T4 with similar results. In addition, T. thermophila was shown to inactivate phages T5 and lambda in co-incubations. Several approaches, including direct visualization by electron microscopy, demonstrated that ingestion is required for T4 inactivation. Mucocysts were shown to have no role in the ingestion of T4. When (35)S-labeled T4 were fed to T. thermophila in a pulse-chase experiment, the degradation of two putative capsid proteins, gp23(*) and hoc, was observed. In addition, a polypeptide with the apparent molecular mass of 52 kDa was synthesized. This suggests that Tetrahymena can use phages as a minor nutrient source in the absence of bacteria.


Subject(s)
Bacteriophage T4/growth & development , Tetrahymena/physiology , Tetrahymena/virology , Animals , Bacteriophage T4/ultrastructure , Bacteriophage lambda/growth & development , Capsid Proteins/metabolism , Coculture Techniques/methods , Isotope Labeling , Microscopy, Electron , Mutation , Sulfur Radioisotopes/metabolism , T-Phages/growth & development , Tetrahymena/genetics , Tetrahymena/ultrastructure , Tetrahymena thermophila/genetics , Tetrahymena thermophila/physiology , Tetrahymena thermophila/ultrastructure , Tetrahymena thermophila/virology , Virus Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL
...