Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 12(12)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255606

ABSTRACT

Among advanced formulation strategies, nanoemulsions are considered useful drug-delivery systems allowing to improve the solubility and the bioavailability of lipophilic drugs. To select safe excipients for nanoemulsion formulation and to discard any haemolytic potential, an in vitro miniaturized test was performed on human whole blood. From haemolysis results obtained on eighteen of the most commonly used excipients, a medium chain triglyceride, a surfactant, and a solubilizer were selected for formulation assays. Based on a design of experiments and a ternary diagram, the feasibility of nanoemulsions was determined. The composition was defined to produce monodisperse nanodroplets with a diameter of either 50 or 120 nm, and their physicochemical properties were optimized to be suitable for intravenous administration. These nanoemulsions, stable over 21 days in storage conditions, were shown to be able to encapsulate with high encapsulation efficiency and high drug loading, up to 16% (w/w), two water practically insoluble drug models: ibuprofen and fenofibrate. Both drugs may be released according to a modulable profile in sink conditions. Such nanoemulsions appear as a very promising and attractive strategy for the efficient early preclinical development of hydrophobic drugs.

2.
ChemMedChem ; 15(1): 136-154, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31743599

ABSTRACT

Pyridoclax is considered a promising anticancer drug, acting as a protein-protein interaction disruptor, with potential applications in the treatment of ovarian, lung, and mesothelioma cancers. Eighteen sensibly selected structural analogues of Pyridoclax were synthesized, and their physicochemical properties were systematically assessed and analyzed. Moreover, considering that drug-membrane interactions play an essential role in understanding the mode of action of a given drug and its eventual toxic effects, membrane models were used to investigate such interactions in bulk (liposomes) and at the air-water interface. The measured experimental data on all original oligopyridines allowed the assessment of relative differences in terms of physicochemical properties, which could be determinant for their druggability, and hence for drug development.


Subject(s)
Liposomes/chemistry , Pyridines/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kinetics , Liposomes/metabolism , Microscopy, Atomic Force , Octanols/chemistry , Pyridines/chemical synthesis , Pyridines/metabolism , Solubility , Spectrometry, Fluorescence , Structure-Activity Relationship , Water/chemistry
3.
Toxicol Rep ; 5: 96-107, 2018.
Article in English | MEDLINE | ID: mdl-29854581

ABSTRACT

A growing body of research suggests that dysbiosis of the gut microbiota induced by environmental pollutants, such as pesticides, could have a role in the development of metabolic disorders. We have examined the long-term effects of 3 doses of the Roundup(R) herbicide (made of glyphosate and formulants) on the gut microbiota in male and female Sprague-Dawley rats. A total of 141 bacteria families were identified by a 16S sequencing analysis approach. An OPLS-DA analysis revealed an increased Bacteroidetes family S24-7 and a decreased Lactobacillaceae in 8 out of the 9 females treated with 3 different doses of R (n = 3, for each dose). These effects were confirmed by repetitive sequence-based PCR fingerprinting showing a clustering of treated females. A culture-based method showed that R had a direct effect on rat gut microbiota. Cultivable species showed different sensitivities to R, including the presence of a high tolerant or resistant strain identified as Escherichia coli by 16S rRNA sequencing. The high tolerance of this E. Coli strain was explained by the absence of the EPSPS gene (coding glyphosate target enzyme) as shown by DNA amplification. Overall, these gut microbiome disturbances showed a substantial overlap with those associated with liver dysfunction in other studies. In conclusion, we revealed that an environmental concentration of R (0.1 ppb) and other two concentrations (400 ppm and 5,000 ppm) have a sex-dependent impact on rat gut microbiome composition and thus warrants further investigation.

4.
Environ Sci Eur ; 26(1): 14, 2014.
Article in English | MEDLINE | ID: mdl-27752412

ABSTRACT

BACKGROUND: The health effects of a Roundup-tolerant NK603 genetically modified (GM) maize (from 11% in the diet), cultivated with or without Roundup application and Roundup alone (from 0.1 ppb of the full pesticide containing glyphosate and adjuvants) in drinking water, were evaluated for 2 years in rats. This study constitutes a follow-up investigation of a 90-day feeding study conducted by Monsanto in order to obtain commercial release of this GMO, employing the same rat strain and analyzing biochemical parameters on the same number of animals per group as our investigation. Our research represents the first chronic study on these substances, in which all observations including tumors are reported chronologically. Thus, it was not designed as a carcinogenicity study. We report the major findings with 34 organs observed and 56 parameters analyzed at 11 time points for most organs. RESULTS: Biochemical analyses confirmed very significant chronic kidney deficiencies, for all treatments and both sexes; 76% of the altered parameters were kidney-related. In treated males, liver congestions and necrosis were 2.5 to 5.5 times higher. Marked and severe nephropathies were also generally 1.3 to 2.3 times greater. In females, all treatment groups showed a two- to threefold increase in mortality, and deaths were earlier. This difference was also evident in three male groups fed with GM maize. All results were hormone- and sex-dependent, and the pathological profiles were comparable. Females developed large mammary tumors more frequently and before controls; the pituitary was the second most disabled organ; the sex hormonal balance was modified by consumption of GM maize and Roundup treatments. Males presented up to four times more large palpable tumors starting 600 days earlier than in the control group, in which only one tumor was noted. These results may be explained by not only the non-linear endocrine-disrupting effects of Roundup but also by the overexpression of the EPSPS transgene or other mutational effects in the GM maize and their metabolic consequences. CONCLUSION: Our findings imply that long-term (2 year) feeding trials need to be conducted to thoroughly evaluate the safety of GM foods and pesticides in their full commercial formulations.

5.
Food Chem Toxicol ; 53: 476-83, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23146697

ABSTRACT

Our recent work (Séralini et al., 2012) remains to date the most detailed study involving the life-long consumption of an agricultural genetically modified organism (GMO). This is true especially for NK603 maize for which only a 90-day test for commercial release was previously conducted using the same rat strain (Hammond et al., 2004). It is also the first long term detailed research on mammals exposed to a highly diluted pesticide in its total formulation with adjuvants. This may explain why 75% of our first criticisms arising within a week, among publishing authors, come from plant biologists, some developing patents on GMOs, even if it was a toxicological paper on mammals, and from Monsanto Company who owns both the NK603 GM maize and Roundup herbicide (R). Our study has limits like any one, and here we carefully answer to all criticisms from agencies, consultants and scientists, that were sent to the Editor or to ourselves. At this level, a full debate is biased if the toxicity tests on mammals of NK603 and R obtained by Monsanto Company remain confidential and thus unavailable in an electronic format for the whole scientific community to conduct independent scrutiny of the raw data. In our article, the conclusions of long-term NK603 and Roundup toxicities came from the statistically highly discriminant findings at the biochemical level in treated groups in comparison to controls, because these findings do correspond in an blinded analysis to the pathologies observed in organs, that were in turn linked to the deaths by anatomopathologists. GM NK603 and R cannot be regarded as safe to date.


Subject(s)
Glycine/analogs & derivatives , Herbicides/toxicity , Plants, Genetically Modified/toxicity , Zea mays/toxicity , Animals , Female , Male
6.
Food Chem Toxicol ; 50(11): 4221-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22999595

ABSTRACT

The health effects of a Roundup-tolerant genetically modified maize (from 11% in the diet), cultivated with or without Roundup, and Roundup alone (from 0.1 ppb in water), were studied 2 years in rats. In females, all treated groups died 2-3 times more than controls, and more rapidly. This difference was visible in 3 male groups fed GMOs. All results were hormone and sex dependent, and the pathological profiles were comparable. Females developed large mammary tumors almost always more often than and before controls, the pituitary was the second most disabled organ; the sex hormonal balance was modified by GMO and Roundup treatments. In treated males, liver congestions and necrosis were 2.5-5.5 times higher. This pathology was confirmed by optic and transmission electron microscopy. Marked and severe kidney nephropathies were also generally 1.3-2.3 greater. Males presented 4 times more large palpable tumors than controls which occurred up to 600 days earlier. Biochemistry data confirmed very significant kidney chronic deficiencies; for all treatments and both sexes, 76% of the altered parameters were kidney related. These results can be explained by the non linear endocrine-disrupting effects of Roundup, but also by the overexpression of the transgene in the GMO and its metabolic consequences.


Subject(s)
Glycine/analogs & derivatives , Herbicides/toxicity , Plants, Genetically Modified/toxicity , Zea mays/toxicity , Animals , Carcinogens/toxicity , Dose-Response Relationship, Drug , Endocrine Disruptors/toxicity , Female , Glycine/pharmacology , Glycine/toxicity , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Mammary Neoplasms, Animal/chemically induced , Microscopy, Electron, Transmission , Necrosis/chemically induced , Pituitary Gland/drug effects , Pituitary Gland/pathology , Rats, Sprague-Dawley , Survival Rate , Toxicity Tests, Chronic/methods , Zea mays/genetics , Glyphosate
7.
J Agric Food Chem ; 58(13): 7782-93, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20527953

ABSTRACT

A total of 207 volatile compounds were identified in extracts of four French labeled brandies: Armagnac, Cognac, Calvados, and Mirabelle. Relative levels of all components were determined using GC-MS after integration of a selected peak of the mass spectrum of each. Each type of brandy could be clearly discriminated using PLS-DA statistical analyses based on these levels. French Mirabelle spirit, which was studied for the first time, was characterized by higher levels of many aldehydes and acetals and by the presence of compounds having an odd number of carbons together with benzaldehyde and some of its derivatives. Many possible derivatives of acrolein and high amounts of butan-2-ol were rather specific for the volatile composition of Calvados. The most important difference between the two wine-based samples seemed to be directly linked to the distillation system used. Many furanic compounds are specific to Cognac, whereas two or three compounds such as 1-(ethoxyethoxy)-2-methylbutane and gamma-eudesmol were specific to Armagnac. These two brandies presented rather high distributions of isobutanol and isopentanols, whereas Mirabelle and Calvados compositions offer more concentrated aliphatic linear alcohols.


Subject(s)
Volatile Organic Compounds/analysis , Wine/analysis , Gas Chromatography-Mass Spectrometry , Least-Squares Analysis
8.
Nat Prod Commun ; 4(11): 1585-94, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19967997

ABSTRACT

The chemical compositions of the essential oils of Pituranthos chloranthus harvested at the vegetative, flower budding, flowering and fruiting stages from three distinct geographical areas of Tunisia were investigated using GC-FID and GC-MS. One hundred and fifty compounds were identified in which alpha-pinene, beta-pinene, alpha-phellandrene, beta-myrcene, beta-phellandrene, p-cymene, 8-methyldecanal, exo-2-hydroxycineole acetate and carvacrol could reach more than 10% of the total amount. However, this composition varied with respect to both the geographical area and the season. A clear discrimination of samples could be achieved by submitting the results to PLS discriminant analysis. p-Cymenene was only detected at the floral budding stage (February), whereas high amounts of exo-2-hydroxycineole and exo-2-hydroxycineole acetate were specific for the flowering period (April). Carvacrol was showed to be characteristic mainly of the fruiting period (August), whereas the vegetative state (November) could be distinguished from the others by the presence of alpha- and beta-pinene. Limonene, camphene, geraniol and beta-damascenone were likely to be specific for the essential oils of this species collected from the different regions of Tunisia.


Subject(s)
Oils, Volatile/analysis , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Chromatography, Thin Layer , Flame Ionization , Gas Chromatography-Mass Spectrometry , Seasons , Sesquiterpenes/chemistry , Spectrometry, Mass, Electrospray Ionization , Terpenes/chemistry , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...