Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 89(9): e0005921, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33820817

ABSTRACT

Diarrheal diseases are a leading cause of death in children under the age of 5 years worldwide. Repeated early-life exposures to diarrheal pathogens can result in comorbidities including stunted growth and cognitive deficits, suggesting an impairment in the microbiota-gut-brain (MGB) axis. Neonatal C57BL/6 mice were infected with enteropathogenic Escherichia coli (EPEC) (strain e2348/69; ΔescV [type III secretion system {T3SS} mutant]) or the vehicle (Luria-Bertani [LB] broth) via orogastric gavage at postnatal day 7 (P7). Behavior (novel-object recognition [NOR] task, light/dark [L/D] box, and open-field test [OFT]), intestinal physiology (Ussing chambers), and the gut microbiota (16S Illumina sequencing) were assessed in adulthood (6 to 8 weeks of age). Neonatal infection of mice with EPEC, but not the T3SS mutant, caused ileal inflammation in neonates and impaired recognition memory (NOR task) in adulthood. Cognitive impairments were coupled with increased neurogenesis (Ki67 and doublecortin immunostaining) and neuroinflammation (increased microglia activation [Iba1]) in adulthood. Intestinal pathophysiology in adult mice was characterized by increased secretory state (short-circuit current [Isc]) and permeability (conductance) (fluorescein isothiocyanate [FITC]-dextran flux) in the ileum and colon of neonatally EPEC-infected mice, along with increased expression of proinflammatory cytokines (Tnfα, Il12, and Il6) and pattern recognition receptors (Nod1/2 and Tlr2/4). Finally, neonatal EPEC infection caused significant dysbiosis of the gut microbiota, including decreased Firmicutes, in adulthood. Together, these findings demonstrate that infection in early life can significantly impair the MGB axis in adulthood.


Subject(s)
Brain/metabolism , Enteropathogenic Escherichia coli/physiology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Feedback, Physiological , Gastrointestinal Microbiome , Intestines , Animals , Disease Susceptibility , Humans
2.
Dig Dis Sci ; 66(7): 2250-2260, 2021 07.
Article in English | MEDLINE | ID: mdl-32556816

ABSTRACT

BACKGROUND: Enteropathogenic Escherichia coli (EPEC) infection causes prolonged, watery diarrhea leading to morbidity and mortality. Although EPEC infection impacts nutrient transporter function and expression in intestinal epithelial cells, the effects of EPEC infection on intestinal absorption of ascorbic acid (AA) have not yet been investigated. AIMS: To investigate the effect of EPEC infection on intestinal AA uptake process and expression of both AA transporters. METHODS: We used two experimental models: human-derived intestinal epithelial Caco-2 cells and mice. 14C-AA uptake assay, Western blot, RT-qPCR, and promoter assay were performed. RESULTS: EPEC (WT) as well as ΔespF and ΔespG/G2 mutant-infected Caco-2 cells showed markedly inhibited AA uptake, while other mutants (ΔescN, ΔespA, ΔespB, and ΔespD) did not affect AA uptake. Infection also reduced protein and mRNA expression levels for both hSVCT1 and hSVCT2. EPEC-infected mice showed marked inhibitory effect on AA uptake and decreased protein and mRNA expression levels for both mSVCT1 and mSVCT2 in jejunum and colon. MicroRNA regulators of SVCT1 and SVCT2 (miR103a, miR141, and miR200a) were upregulated significantly upon EPEC infection in both Caco-2 and mouse jejunum and colon. In addition, expression of the accessory protein glyoxalate reductase/hydroxypyruvate reductase (GRHPR), which regulates SVCT1 function, was markedly decreased by EPEC infection in both models. CONCLUSIONS: These findings suggest that EPEC infection causes inhibition in AA uptake through a multifactorial dysregulation of SVCT1 and SVCT2 expression in intestinal epithelial cells.


Subject(s)
Ascorbic Acid/metabolism , Enteropathogenic Escherichia coli , Escherichia coli Infections/pathology , Intestinal Mucosa/metabolism , Sodium-Coupled Vitamin C Transporters/metabolism , Animals , Biological Transport , Caco-2 Cells , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation , Humans , Mice , Mutation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium-Coupled Vitamin C Transporters/genetics
3.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G361-G374, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32726162

ABSTRACT

Inflammatory bowel diseases (IBDs) are chronic intestinal diseases, frequently associated with comorbid psychological and cognitive deficits. These neuropsychiatric effects include anxiety, depression, and memory impairments that can be seen both during active disease and following remission and are more frequently seen in pediatric patients. The mechanism(s) through which these extraintestinal deficits develop remain unknown, and the study of these phenomenon is hampered by a lack of murine pediatric IBD models. Herein we describe microbiota-gut-brain (MGB) axis deficits following induction of colitis in a pediatric setting. Acute colitis was induced by administration of 2% dextran sodium sulfate (DSS) for 5 days starting at weaning [postnatal day (P)21] causing reduced weight gain, colonic shortening, and colonic inflammation by 8 days post-DSS (P29), which were mostly resolved in adult (P56) mice. Despite resolution of acute disease, cognitive deficits (novel object recognition task) and anxiety-like behavior (light/dark box) were identified in the absence of changes in exploratory behavior (open field test) in P56 mice previously treated with DSS at weaning. Behavioral deficits were found in conjunction with neuroinflammation, decreased neurogenesis, and altered expression of pattern recognition receptor genes in the hippocampus. Additionally, persistent alterations in the gut microbiota composition were observed at P56, including reduced butyrate-producing species. Taken together, these results describe for the first time the presence of MGB axis deficits following induction of colitis at weaning, which persist in adulthood.NEW & NOTEWORTHY Here we describe long-lasting impacts on the microbiota-gut-brain (MGB) axis following administration of low-dose dextran sodium sulfate (DSS) to weaning mice (P21), including gut dysbiosis, colonic inflammation, and brain/behavioral deficits in adulthood (P56). Early-life DSS leads to acute colonic inflammation, similar to adult mice; however, it results in long-lasting deficits in the MGB axis in adulthood (P56), in contrast to the transient deficits seen in adult DSS. This model highlights the unique features of pediatric inflammatory bowel disease.


Subject(s)
Brain/physiopathology , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiopathology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/physiopathology , Neural Pathways/physiopathology , Animals , Anxiety/psychology , Behavior, Animal , Cognition Disorders/etiology , Cognition Disorders/psychology , Colitis/chemically induced , Colitis/microbiology , Colitis/physiopathology , Dextran Sulfate , Disease Models, Animal , Dysbiosis , Female , Hippocampus/metabolism , Humans , Inflammatory Bowel Diseases/psychology , Mice , Mice, Inbred C57BL , Neurogenesis , Weight Gain
4.
Hum Immunol ; 76(12): 928-38, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26027777

ABSTRACT

Clinical immunogenetics laboratories performing routine sequencing of human leukocyte antigen (HLA) genes in support of hematopoietic cell transplantation are motivated to upgrade to next-generation sequencing (NGS) technology by its potential for cost savings as well as testing accuracy and flexibility. While NGS machines are available and simple to operate, there are few systems available that provide comprehensive sample preparation and data analysis workflows to complete the process. We report on the development and testing of the Integrated Genotyping System (IGS), which has been designed to specifically address the challenges associated with the adoption of NGS in clinical laboratories. To validate the system for a variety of sample DNA sources, we have tested 336 DNA specimens from whole blood, dried blood spots, buccal swabs, and lymphoblastoid cell lines. HLA class I and class II genotypes were derived from amplicon sequencing of HLA-A, -B, -C for exons 1-7 and HLA-DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4, -DRB5 for exons 1-4. Additionally, to demonstrate the extensibility of the IGS to other genetic loci, KIR haplotyping of 93 samples was carried out in parallel with HLA typing using a workflow based on the HLA system. These results are discussed with respect to their applications in the clinical setting and consequent potential for advancing precision medicine.


Subject(s)
Genotyping Techniques , HLA Antigens/genetics , High-Throughput Nucleotide Sequencing/methods , Histocompatibility Testing , Alleles , Computational Biology/methods , Exons , Genotype , Haplotypes , High-Throughput Nucleotide Sequencing/standards , Humans , Reproducibility of Results , Sequence Analysis, DNA , Software , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...