Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8221, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102107

ABSTRACT

Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and ß-arrestin2 transducers, making their respective roles unclear. To elucidate this, we develop a series of 5-HT2A-selective ligands with varying Gq efficacies, including ß-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-ß-arrestin2 recruitment efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A Gq-efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that ß-arrestin-biased 5-HT2A receptor agonists block psychedelic effects and induce receptor downregulation and tachyphylaxis. Overall, 5-HT2A receptor Gq-signaling can be fine-tuned to generate ligands distinct from classical psychedelics.


Subject(s)
Hallucinogens , Male , Animals , Mice , Hallucinogens/pharmacology , Receptor, Serotonin, 5-HT2A , Serotonin , Signal Transduction , beta-Arrestins , Ligands
2.
bioRxiv ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37577474

ABSTRACT

Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and ß-arrestin2 signaling, making their respective roles unclear. To elucidate this, we developed a series of 5-HT2A-selective ligands with varying Gq efficacies, including ß-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-ß-arrestin2 efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A-Gq efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that ß-arrestin-biased 5-HT2A receptor agonists induce receptor downregulation and tachyphylaxis, and have an anti-psychotic-like behavioral profile. Overall, 5-HT2A receptor signaling can be fine-tuned to generate ligands with properties distinct from classical psychedelics.

3.
Science ; 379(6633): 700-706, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36795823

ABSTRACT

Decreased dendritic spine density in the cortex is a hallmark of several neuropsychiatric diseases, and the ability to promote cortical neuron growth has been hypothesized to underlie the rapid and sustained therapeutic effects of psychedelics. Activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) is essential for psychedelic-induced cortical plasticity, but it is currently unclear why some 5-HT2AR agonists promote neuroplasticity, whereas others do not. We used molecular and genetic tools to demonstrate that intracellular 5-HT2ARs mediate the plasticity-promoting properties of psychedelics; these results explain why serotonin does not engage similar plasticity mechanisms. This work emphasizes the role of location bias in 5-HT2AR signaling, identifies intracellular 5-HT2ARs as a therapeutic target, and raises the intriguing possibility that serotonin might not be the endogenous ligand for intracellular 5-HT2ARs in the cortex.


Subject(s)
Antidepressive Agents , Cerebral Cortex , Hallucinogens , Neuronal Plasticity , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Hallucinogens/pharmacology , Neuronal Plasticity/drug effects , Serotonin/pharmacology , Signal Transduction , Serotonin 5-HT2 Receptor Agonists/pharmacology , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Animals , Mice , Mice, Knockout , Antidepressive Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...