Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 110(10): 4782-92, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16526715

ABSTRACT

Self-assembled monolayers of 1, 4-phenylene diisocyanide (PDI) were formed on Au and Pt-group transition metals and examined by surface-enhanced Raman spectroscopy under controlled applied potential. On all of the metals examined, PDI adsorbs in an edge-on manner, with one NC group bound to the surface and the other pointing away from the surface. The N-C stretching frequency (nu(NC)) suggests that depending on the metal, PDI adsorbs on different binding sites: terminal sites on Au, both terminal and bridging on Rh and Pt, and predominantly 3-fold hollow sites for Pd. This binding site preference can be understood in terms of the difference in d-band center energy and d-orbital filling among the metals. The applied potential affects the N-C bonding differently as inferred from the potential dependence of nu(NC). On Au, Rh, and Pd, the nu(NC) increases linearly with the applied potential, yielding a Stark tuning slope, dnu(NC)/dE, of 25, 12, and 10 cm(-1)/V, respectively. On Pt, the nu(NC) is nearly independent of the applied potential. On all of the metals studied, the frequencies of benzene ring vibration modes are not dependent on the applied potential, consistent with the edge-on orientation in which the ring does not directly interact with the surface. Several ring vibrations are, however, sensitive to the nature of metal substrate due to different binding sites involved. The ability of the free NC group to function as an anchoring point is demonstrated by the attachment of gold nanoparticles on PDI-covered Au and Pd. The study provides useful NC-metal bonding information for isocyanide-based molecular electronic developments.

SELECTION OF CITATIONS
SEARCH DETAIL
...