Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930849

ABSTRACT

This study delves into the necessity of mitigating carbon dioxide (CO2) emissions, focusing on effective capture methods to combat global warming by investigating the solubility of CO2 in three ionic liquids (ILs), 1-Decyl-3-MethylimidazoliumBis (Trifluromethylsulfonyl Imide) [IL1], 1-Hexadecyl-3-Methyl imidazoliumBis (Trifluromethylsulfonyl Imide) [IL2] and Triethytetradecyl Ammonium Bis (Trifluromethylsulfonyl Imide) [IL3]. Solubility experiments were conducted at (30, 50 and 70) °C with pressures up to 1.5 MPa. The research shows [IL2] as the superior candidate for CO2 capture, with its longer alkyl chain, and is confirmed by its lower Henry's Law constant. Utilizing the Peng Robinson equation of state, the study correlates well with the solubility measurements using three mixing rules. The study reveals promising results for IL1, IL2 and IL3 surpassing all other published ionic liquids including Selexol/Genesorb 1753, except for 1-Methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide. Insights into the enthalpy and entropy of absorption underscore the significant impact of IL structure on CO2 solubility, emphasizing the potential of tailored ILs for advanced carbon capture strategies. In summary, this research highlights [IL2] as the optimal choice for CO2 capture, offering valuable contributions to the ongoing efforts in combating climate change.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38535662

ABSTRACT

This work presents new composites of AAILs@MCM-48 obtained by functionalizing ordered mesoporous silica MCM-48 with two amino acid-based ionic liquids (AAILs) ([Emim][Gly] and [Emim][Ala]) to improve carbon capture and the selectivity of CO2 over nitrogen. Thermogravimetric and XRD analyses of the composites showed that the MCM-48 support's thermal and structural integrity was preserved after the AAILs were encapsulated. An N2 adsorption-desorption study at 77 K confirmed AAIL encapsulation in the porous support. Under post-combustion flue gas conditions, both [Emim][Gly]@MCM-48 and [Emim][Ala]@MCM-48 demonstrated improved CO2 adsorption in comparison to the unmodified MCM-48, with a CO2 partial pressure of around 0.15 bar. Regarding the maximal CO2 uptake, the 40 wt.%-[Emim][Gly] composite outperformed the others at 303 K, with values of 0.74 and 0.82 mmol g-1, respectively, at 0.1 and 0.2 bar. These numbers show a 10× and 5× increase, respectively, compared to the pure MCM-48 under identical conditions. In addition, the selectivity of the composites was improved significantly at 0.1 bar: the selectivity of composites containing 40 wt.% [Emim][Ala] increased to 17, compared to 2 for pristine MCM-48. These composites outperform other silica-based studies reported in the literature, even those using amines as solvents. The presented composites offer therefore promising prospects for advancing carbon capture technology.

3.
Molecules ; 28(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37894664

ABSTRACT

This study presents the encapsulation of two amino acid-based ionic liquids (AAILs), 1-ethyl-3-methylimidazolium glycine [Emim][Gly] and 1-ethyl-3-methylimidazolium alanine [Emim][Ala], in a highly porous metal-organic framework (MOF-177) to generate state-of-the-art composites for post-combustion CO2 capture. Thermogravimetric analysis (TGA) demonstrated a successful encapsulation of the AAILs, with a dramatic reduction in the composites' surface areas and pore volumes. Both [Emim][Gly]@MOF-177 and [Emim][Ala]@MOF-177 had close to three times the CO2 uptake of MOF-177 at 20 wt.% loading, 0.2 bar, and 303 K. Additionally, 20-[Emim][Gly]@MOF-177 and 20-[Emim] [Ala]@MOF-177 enhanced their CO2/N2 selectivity from 5 (pristine MOF-177) to 13 and 11, respectively.

4.
Sci Rep ; 13(1): 13414, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37591990

ABSTRACT

Metal compounds continued to attract diverse applications due to their malleability in several capacities. In this study, we present our findings on the crystal structures and functional properties of Ni2+ and Cu2+ complexes of N'-(2,6-dichlorophenyl)-N-mesitylformamidine dithiocarbamate (L) comprising [Ni-(L)2] (1) and [Cu-(L)2] (2) with a four-coordinate metal center. We established the two complex structures through 1H and 13C nuclear magnetic resonance (NMR), elemental, and single-crystal X-ray analysis. The analyses showed that the two complexes are isomorphous, having P21/c as a space group and a unit-cell similarity index (π) of 0.002. The two complexes conform to a distorted square planar geometry around the metal centers. The calculated and experimental data, including bond lengths, angles, and NMR values, are similar. Hirshfeld surface analysis revealed the variational contribution of the different types of intermolecular contacts driven by the crystal lattice of the two solvated complexes. Our knowledge of the potential biological implication of these structures enabled us to probe the compounds as prospective CYP3A4 inhibitors. This approach mimics current trends in pharmaceutical design and biomedicine by incorporating potentially active molecules into various media to predict their biological efficacies. The simulations show appreciable binding of compounds 1 and 2 to CYP3A4 with average interaction energies of -97 and -87 kcal/mol, respectively. The protein attains at least five conformational states in the three studied models using a Gaussian Mixture Model-based clustering and free energy prediction. Electric field analysis shows the crucial residues to substrate binding at the active site, enabling CYP3A4 structure to function prediction. The predicted inhibition with these Ni2+ and Cu2+ complexes indicates that CYP3A4 overexpression in a diseased state like cancer would reduce, thereby increasing the chemotherapeutic compounds' shelf-lives for adsorption. This multidimensional study addresses various aspects of molecular metal electronics, including their application as substrate-mimicking inhibitors. The outcome would enable further research on bio-metal compounds of critical potential.

5.
Membranes (Basel) ; 12(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36557105

ABSTRACT

In this comprehensive study, a seven-channel ultrafiltration (UF) titania membrane was used to investigate the impact of the pulsatile cleaning process on the crossflow filtration system. Seventeen experimental runs were performed for different operating conditions with a transmembrane pressure (TMP) varying from 0.5 to 1.5 bar, a crossflow velocity (CFV) ranging from 0.5 to 1 m/s, and pulsatile parameters within an interval varying from 60 to 120 s with a duration of 0.8 s, and collecting membrane permeate flux and volume data. The optimized operating conditions revealed that a TMP of 1.5 bar, a CFV of 0.71 m/s, and a pulsatile cycle of 85 s were the best operating conditions to reach the highest steady permeability flux and volume of 302 LMH and 8.11 L, respectively. The UF ceramic membrane under the optimized inputs allowed for an oil-rejection ability of 99%. The Box-Behnken design (BBD) model was used to analyze the effect of crossflow operating conditions on the permeate flux and volume. The analysis of variance (ANOVA) indicated that the quadratic regression models were highly significant. At a 95% confidence interval, the optimum TMP significantly enhanced the flux and permeate volume simultaneously. The results also demonstrated a positive interaction between the TMP and the pulsatile process, enhancing the permeate flux with a slight impact on the permeate volume. At the same time, the interaction between the CFV and pulsatile flow improved the permeability and increased the permeate volume.

6.
Membranes (Basel) ; 12(9)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36135887

ABSTRACT

Fouling represents a bottleneck problem for promoting the use of membranes in filtration and separation applications. It becomes even more persistent when it comes to the filtration of fluid emulsions. In this case, a gel-like layer that combines droplets, impurities, salts, and other materials form at the membrane's surface, blocking its pores. It is, therefore, a privilege to combat fouling by minimizing the accumulation of these droplets that work as seeds for other incoming droplets to cluster and coalesce with. In this work, we explore the use of the newly developed and novel periodic feed pressure technique (PFPT) in combating the fouling of ceramic membranes upon the filtration of oily water systems. The PFPT is based on alternating the applied transmembrane pressure (TMP) between the operating one and zero. A PFPT cycle is composed of a filtration half-cycle and a cleaning half-cycle. Permeation occurs when the TMP is set at its working value, while the cleaning occurs when it is zero. Three PFPT patterns were examined over two feeds of oily water systems with oil contents of 100 and 200 ppm, respectively. The results show that the PFPT is very effective in minimizing the problem of fouling compared to a non-PFPT normal filtration. Furthermore, the overall drops in permeate flux during the cleaning half-cycles are compensated by appreciable enhancement due to the significant elimination of fouling development such that the overall production of filtered water is even increased. Inspection of the internal surface of the membrane post rinsing at the end of the experiment proves that all PFPT cycles maintained the ceramic membranes as clean after a 2-h operation. This can ensure a prolonged lifespan of the ceramic membrane use and a continuous greater permeate volume production. The advantage of the PFPT is that it can be implemented on existing units with minimal modification, ease of operation, and saving energy.

7.
Sci Total Environ ; 698: 134288, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31514026

ABSTRACT

The problem of fouling is considered a major reason for deteriorating the performance of porous membranes. Even though the accumulations of materials at the membrane surface are inevitable, efforts are continuously spent to minimize their drawbacks. Several techniques have been tested to minimize the problem of fouling. Some of these methods, however, confront some technical difficulties that make their use unfeasible. For example, in polymeric-type membranes, back flushing may result in the loss of bonding between the active and the support layers resulting thereby to the disintegration of the membrane. Recently, an interestingly new approach has been proposed that minimizes the problem of fouling and maintains the integrity of the membrane. The so-called periodic feed pressure technique, PFPT, cleans the surface of the membrane by reducing the adherence of the droplets to the membrane giving the chance to the crossflow field to sweep off pinned droplets. In this work, some of the features of the PFPT technique are highlighted using results from CFD simulation. Then we further investigate the PFPT technique in the realm of the multicontinuum modeling approach in which both the emulsion and the membrane are treated as overlapping continua. The behavior of the membrane is studied considering different transmembrane pressure values to highlight the fates of the different oil continua upon interacting with membrane continua. From the CFD highlights, it is found that during the half cycle when the TMP is set to zero, oil droplets at the surface of the membrane becomes unstable and it becomes easier for the crossflow field to dislodge them. The multicontinuum study, on the other hand, provides macroscopic analysis on the effects of different TMP cycles on important macroscopic parameters that influence the design, including the rejection capacity of membranes.

8.
Water Res ; 146: 159-176, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30243059

ABSTRACT

Oily water production is one of the many drawbacks of petroleum and several other industries. Finding effective ways for the treatment of produced water remain one of the main areas of interest in membrane sciences. Albeit the many advantages of membrane technology, they suffer from the unavoidable problem of fouling, which results from the accumulation of dispersed materials at the surface of membranes. Membrane modification and operational optimization have been approached as a potential cure of the problem of fouling. In this work we introduce a new and novel method that minimizes the development of fouling and in the same time utilizes no chemicals (i.e., environmentally friendly). The core of this method is based on alternating the pressure in the feed channel in a periodic manner and is therefore named the periodic feed pressure technique, PFPT. The idea is to make pinned droplets at the surface of the membrane lose essential forces that keep them sticking to the surface. The drag force due to permeation flux and the capillary force due to interfacial tension represents the two forces that largely contribute to the pinning of oil droplets at the surface of the membrane. Other forces including buoyancy and lift forces are generally small to be of significant influence. The idea of the PFPT is, therefore, to eliminate the force due to permeation drag. This is done by setting the transmembrane pressure (TMP) to zero at fixed intervals allowing pinned oil droplets to dislodge the surface. When the TMP is set to zero, permeation flux stops and the force due to permeation drag vanishes. This significantly reduces the overall residence time of pinned oil droplets, minimizing the chance for other oil droplets to cluster and coalesce with pinned ones. The PFPT does not cause any damage to the support layer of the polymeric membrane, which is a drawback of back-flushing methodology. The novel PFPT displays minimal membrane fouling and very similar permeation recovery despite only half the cycle time is in filtration mode. In this work, we show how the permeation flux is recovered and provide comparisons between the PFPT and regular filtration methodology. Furthermore, we compare the overall amount of filtrate at the end of the experiments using both methods. It is interesting to note that, the amount of filtrate using the PFPT is very much comparable to that obtained using regular filtration methodology and even higher. By optimizing the frequency of the cycle and the amplitude of the pressure change, it is possible to customize the PFPT to various membrane technologies and to achieve the highest recovery of the flux. Visual inspections of the membranes post operation and post rinsing indicate that membranes undergoing filtration using the PFPT achieves a very clean surface compared with those undergoing regular filtration processes. This method is a promising solution to membrane fouling that is easy to implement without any additional use of chemicals or equipment. Computational fluid dynamics (CFD) investigation is also conducted on microfiltration processes to show why this technique works.


Subject(s)
Hydrodynamics , Water Purification , Filtration , Membranes, Artificial , Porosity
9.
J Phys Chem B ; 119(37): 12256-64, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26376581

ABSTRACT

Quantum chemistry computations with a semicontinuum (cluster + continuum) solvation model have been used to cure long-standing misprediction of aqueous carbamate anion energies in the industrially important CO2 + aqueous amine reaction. Previous errors of over 10 kcal mol(-1) are revealed. Activation energies were also estimated with semicontinuum modeling, and a refined discussion of the competing hypothetical mechanisms for CO2 + monoethanolamine (MEA) is presented. Further results are also presented to demonstrate that the basicity of an amine (aqueous proton affinity) correlates only with CO2 affinity within an amine class: secondary amines have an extra CO2 affinity that primary amines do not have.

10.
J Phys Chem Lett ; 5(7): 1151-6, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-26274463

ABSTRACT

Ab initio molecular dynamics simulations of up to 210 ps have been performed on various aqueous intermediates postulated in the CO2 + amine reaction, important for CO2 capture. Observations of spontaneous deprotonation of aqueous carbamate zwitterions R1R2NHCOO(±) by bulk water (instead of additional amine, or via umbrella sampling) are reported apparently for the first time. Carbamic acid structures R1R2NCOOH were observed in some simulations, arising from zwitterions not via classical 1,3-H-shifts but via Grotthuss-style multiple-H(+) transfer pathways that involve bulk H2O and require carbamate anions R1R2NCOO(-) as an intermediate stage along the way. H(+)-bridging complexes, including not only Zundel ions [water·H(+)·water](+) but neutral carbamate complexes [carbamate(-)·H(+)·water], were observed in simulation. These results should assist efforts in improving underlying mechanisms for kinetic modeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...