Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Struct Biol ; 12: 29, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23153250

ABSTRACT

BACKGROUND: MTMDAT is a program designed to facilitate analysis of mass spectrometry data of proteins and biomolecular complexes that are probed structurally by limited proteolysis. This approach can provide information about stable fragments of multidomain proteins, yield tertiary and quaternary structure data, and help determine the origin of stability changes at the amino acid residue level. Here, we introduce a pipeline between MTMDAT and HADDOCK, that facilitates protein-protein complex structure probing in a high-throughput and highly automated fashion. RESULTS: A new feature of MTMDAT allows for the direct identification of residues that are involved in complex formation by comparing the mass spectra of bound and unbound proteins after proteolysis. If 3D structures of the unbound components are available, this data can be used to define restraints for data-driven docking to calculate a model of the complex. We describe here a new implementation of MTMDAT, which includes a pipeline to the data-driven docking program HADDOCK, thus streamlining the entire procedure. This addition, together with usability improvements in MTMDAT, enables high-throughput modeling of protein complexes from mass spectrometry data. The algorithm has been validated by using the protein-protein interaction between the ubiquitin-binding domain of proteasome component Rpn13 and ubiquitin. The resulting structural model, based on restraints extracted by MTMDAT from limited proteolysis and modeled by HADDOCK, was compared to the published NMR structure, which relied on twelve unambiguous intermolecular NOE interactions. The MTMDAT-HADDOCK structure was of similar quality to structures generated using only chemical shift perturbation data derived by NMR titration experiments. CONCLUSIONS: The new MTMDAT-HADDOCK pipeline enables direct high-throughput modeling of protein complexes from mass spectrometry data. MTMDAT-HADDOCK can be downloaded from http://www.ifm.liu.se/chemistry/molbiotech/maria_sunnerhagens_group/mtmdat/together with the manual and example files. The program is free for academic/non-commercial purposes.


Subject(s)
Cell Adhesion Molecules/metabolism , Mass Spectrometry/methods , Molecular Docking Simulation/methods , Software , Ubiquitin/metabolism , Animals , Cell Adhesion Molecules/chemistry , Intracellular Signaling Peptides and Proteins , Mice , Proteolysis , Ubiquitin/chemistry
2.
Bioinformatics ; 24(10): 1310-2, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18388142

ABSTRACT

UNLABELLED: In structural biology and -genomics, nuclear magnetic resonance (NMR) spectroscopy and crystallography are the methods of choice, but sample requirements can be hard to fulfil. Valuable structural information can also be obtained by using a combination of limited proteolysis and mass spectrometry, providing not only knowledge of how to improve sample conditions for crystallization trials or NMR spectrosopy by gaining insight into subdomain identities but also probing tertiary and quaternary structure, folding and stability, ligand binding, protein interactions and the location of post-translational modifications. For high-throughput studies and larger proteins, however, this experimentally fast and easy approach produces considerable amounts of data, which until now has made the evaluation exceedingly laborious if at all manually possible. MTMDAT, equipped with a browser-like graphical user interface, accelerates this evaluation manifold by automated peak picking, assignment, data processing and visualization. AVAILABILITY: MTMDAT can be downloaded from the following page: http://www.cms.liu.se/chemistry/molbiotech/maria_sunnerhagens_group/mtmdat by clicking on the corresponding links (windows- or unix-based) together with the manual and example files. The program is free for academic/non-commercial purposes only.


Subject(s)
Algorithms , Mass Spectrometry/methods , Proteins/chemistry , Proteins/ultrastructure , Sequence Analysis, Protein/methods , Software , User-Computer Interface , Amino Acid Sequence , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary
3.
J Mol Biol ; 377(2): 431-49, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18272178

ABSTRACT

Ro52 is a major autoantigen that is targeted in the autoimmune disease Sjögren syndrome and belongs to the tripartite motif (TRIM) protein family. Disease-related antigenic epitopes are mainly found in the coiled-coil domain of Ro52, but one such epitope is located in the Zn(2+)-binding region, which comprises an N-terminal RING followed by a B-box, separated by a approximately 40-residue linker peptide. In the present study, we extend the structural, biophysical, and immunological knowledge of this RING-B-box linker (RBL) by employing an array of methods. Our bioinformatic investigations show that the RBL sequence motif is unique to TRIM proteins and can be classified into three distinct subtypes. The RBL regions of all three subtypes are as conserved as their known flanking domains, and all are predicted to comprise an amphipathic helix. This helix formation is confirmed by circular dichroism spectroscopy and is dependent on the presence of the RING. Immunological studies show that the RBL is part of a conformation-dependent epitope, and its antigenicity is likewise dependent on a structured RING domain. Recombinant Ro52 RING-RBL exists as a monomer in vitro, and binding of two Zn(2+) increases its stability. Regions stabilized by Zn(2+) binding are identified by limited proteolysis and matrix-assisted laser desorption/ionization mass spectrometry. Furthermore, the residues of the RING and linker that interact with each other are identified by analysis of protection patterns, which, together with bioinformatic and biophysical data, enabled us to propose a structural model of the RING-RBL based on modeling and docking experiments. Sequence similarities and evolutionary sequence patterns suggest that the results obtained from Ro52 are extendable to the entire TRIM protein family.


Subject(s)
Autoantigens/immunology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/immunology , Epitopes/immunology , Nuclear Proteins/chemistry , Nuclear Proteins/immunology , Sjogren's Syndrome/immunology , Autoantigens/chemistry , Autoantigens/genetics , DNA-Binding Proteins/classification , DNA-Binding Proteins/metabolism , Epitopes/chemistry , Models, Molecular , Molecular Sequence Data , Nuclear Proteins/classification , Nuclear Proteins/metabolism , Protein Binding , RING Finger Domains , Ribonucleoproteins , Sjogren's Syndrome/genetics , Sjogren's Syndrome/metabolism , Spectrometry, Mass, Electrospray Ionization , Zinc/chemistry , Zinc/metabolism
4.
Article in English | MEDLINE | ID: mdl-16754981

ABSTRACT

In order to understand elongator tRNA(Ser) and suppressor tRNA(Sec) identity elements, the respective acceptor-stem helices have been synthesized and crystallized in order to analyse and compare their structures in detail at high resolution. The synthesis, crystallization and preliminary X-ray diffraction results for a seven-base-pair tRNA(Ser) acceptor-stem helix are presented here. Diffraction data were collected to 1.8 A, applying synchrotron radiation and cryogenic cooling. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 36.14, b = 38.96, c = 30.81 A, beta = 110.69 degrees .


Subject(s)
Oligonucleotides/chemistry , RNA, Transfer, Ser/chemistry , Base Sequence , Crystallization , Nucleic Acid Conformation , Oligonucleotides/chemical synthesis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...