Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7901, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550110

ABSTRACT

High-pressure electrical resistivity measurements reveal that the mechanical deformation of ultra-hard WB2 during compression induces superconductivity above 50 GPa with a maximum superconducting critical temperature, Tcof 17 K at 91 GPa. Upon further compression up to 187 GPa, the Tcgradually decreases. Theoretical calculations show that electron-phonon mediated superconductivity originates from the formation of metastable stacking faults and twin boundaries that exhibit a local structure resembling MgB2 (hP3, space group 191, prototype AlB2). Synchrotron x-ray diffraction measurements up to 145 GPa show that the ambient pressure hP12 structure (space group 194, prototype WB2) continues to persist to this pressure, consistent with the formation of the planar defects above 50 GPa. The abrupt appearance of superconductivity under pressure does not coincide with a structural transition but instead with the formation and percolation of mechanically-induced stacking faults and twin boundaries. The results identify an alternate route for designing superconducting materials.

2.
J Phys Condens Matter ; 33(28)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-33647891

ABSTRACT

A15 Nb3Si is, until now, the only 'high' temperature superconductor produced at high pressure (∼110 GPa) that has been successfully brought back to room pressure conditions in a metastable condition. Based on the current great interest in trying to create metastable-at-room-pressure high temperature superconductors produced at high pressure, we have restudied explosively compressed A15 Nb3Si and its production from tetragonal Nb3Si. First, diamond anvil cell pressure measurements up to 88 GPa were performed on explosively compressed A15 Nb3Si material to traceTcas a function of pressure.Tcis suppressed to ∼5.2 K at 88 GPa. Then, using theseTc(P) data for A15 Nb3Si, pressures up to 92 GPa were applied at room temperature (which increased to 120 GPa at 5 K) on tetragonal Nb3Si. Measurements of the resistivity gave no indication of any A15 structure production, i.e. no indications of the superconductivity characteristic of A15 Nb3Si. This is in contrast to the explosive compression (up toP∼ 110 GPa) of tetragonal Nb3Si, which produced 50%-70% A15 material,Tc= 18 K at ambient pressure, in a 1981 Los Alamos National Laboratory experiment. This implies that the accompanying high temperature (1000 °C) caused by explosive compression is necessary to successfully drive the reaction kinetics of the tetragonal → A15 Nb3Si structural transformation. Our theoretical calculations show that A15 Nb3Si has an enthalpy vs the tetragonal structure that is 70 meV atom-1smallerat 100 GPa, while at ambient pressure the tetragonal phase enthalpy is lower than that of the A15 phase by 90 meV atom-1. The fact that 'annealing' the A15 explosively compressed material at room temperature for 39 years has no effect shows that slow kinetics can stabilize high pressure metastable phases at ambient conditions over long times even for large driving forces of 90 meV atom-1.

3.
J Phys Condens Matter ; 29(47): 473001, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29022886

ABSTRACT

The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

4.
J Phys Condens Matter ; 29(9): 09LT02, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28004645

ABSTRACT

At ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ∼40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values as high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.

5.
Phys Rev Lett ; 98(11): 110201, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17501026

ABSTRACT

We present a simple, robust, and highly efficient method for optimizing all parameters of many-body wave functions in quantum Monte Carlo calculations, applicable to continuum systems and lattice models. Based on a strong zero-variance principle, diagonalization of the Hamiltonian matrix in the space spanned by the wave function and its derivatives determines the optimal parameters. It systematically reduces the fixed-node error, as demonstrated by the calculation of the binding energy of the small but challenging C(2) molecule to the experimental accuracy of 0.02 eV.

6.
Phys Rev Lett ; 91(2): 025701, 2003 Jul 11.
Article in English | MEDLINE | ID: mdl-12906490

ABSTRACT

We propose a new direct mechanism for the pressure driven alpha-->omega martensitic transformation in pure titanium. A systematic algorithm enumerates all possible pathways whose energy barriers are evaluated. A new, homogeneous pathway emerges with a barrier at least 4 times lower than other pathways. The pathway is shown to be favorable in any nucleation model.

SELECTION OF CITATIONS
SEARCH DETAIL
...