Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Res Ther ; 16(1): 101, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711159

ABSTRACT

BACKGROUND: In Alzheimer's disease (AD), microglia surround extracellular plaques and mount a sustained inflammatory response, contributing to the pathogenesis of the disease. Identifying approaches to specifically target plaque-associated microglia (PAMs) without interfering in the homeostatic functions of non-plaque associated microglia would afford a powerful tool and potential therapeutic avenue. METHODS: Here, we demonstrated that a systemically administered nanomedicine, hydroxyl dendrimers (HDs), can cross the blood brain barrier and are preferentially taken up by PAMs in a mouse model of AD. As proof of principle, to demonstrate biological effects in PAM function, we treated the 5xFAD mouse model of amyloidosis for 4 weeks via systemic administration (ip, 2x weekly) of HDs conjugated to a colony stimulating factor-1 receptor (CSF1R) inhibitor (D-45113). RESULTS: Treatment resulted in significant reductions in amyloid-beta (Aß) and a stark reduction in the number of microglia and microglia-plaque association in the subiculum and somatosensory cortex, as well as a downregulation in microglial, inflammatory, and synaptic gene expression compared to vehicle treated 5xFAD mice. CONCLUSIONS: This study demonstrates that systemic administration of a dendranib may be utilized to target and modulate PAMs.


Subject(s)
Alzheimer Disease , Dendrimers , Disease Models, Animal , Mice, Transgenic , Microglia , Plaque, Amyloid , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Microglia/drug effects , Microglia/metabolism , Plaque, Amyloid/drug therapy , Plaque, Amyloid/pathology , Mice , Amyloid beta-Peptides/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Humans
2.
Alzheimers Dement ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506634

ABSTRACT

BACKGROUND: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS: CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS: Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aß) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aß-associated inflammation, gliosis, and neuronal damage. DISCUSSION: Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aß pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS: ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.

3.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546983

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with remarkable differences evident between individuals at the molecular level. Here we present a transcriptomic survey of AD using spatial transcriptomics (ST) and single-nucleus RNA-seq in cortical samples from early-stage AD, late-stage AD, and AD in Down Syndrome (AD in DS) donors. Studying AD in DS provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. Our analysis revealed spatial and cell-type specific changes in disease, with broad similarities in these changes between sAD and AD in DS. We performed additional ST experiments in a disease timecourse of 5xFAD and wildtype mice to facilitate cross-species comparisons. Finally, amyloid plaque and fibril imaging in the same tissue samples used for ST enabled us to directly link changes in gene expression with accumulation and spread of pathology.

4.
Glia ; 70(2): 287-302, 2022 02.
Article in English | MEDLINE | ID: mdl-34643971

ABSTRACT

Previous studies suggest that microglial-expressed Apolipoprotein E (ApoE) is necessary to shift microglia into a neurodegenerative transcriptional state in Alzheimer's disease (AD) mouse models. On the other hand, elimination of microglia shifts amyloid beta (Aß) accumulation from parenchymal plaques to cerebral amyloid angiopathy (CAA), mimicking the effects of global APOE*4 knock-in. Here, we specifically knock-out microglial-expressed ApoE while keeping astrocytic-expressed ApoE intact. When microglial-specific ApoE is knocked-out of a 5xFAD mouse model of AD, we found a ~35% increase in average Aß plaque size, but no changes in plaque load, microglial number, microglial clustering around Aß plaques, nor the formation of CAA. Immunostaining revealed ApoE protein present in plaque-associated microglia in 5xFAD mice with microglial-specific ApoE knockout, suggesting that microglia can take up ApoE from other cellular sources. Mice with Apoe knocked-out of microglia had lower synaptic protein levels than control mice, indicating that microglial-expressed ApoE may have a role in synapse maintenance. Surprisingly, microglial-specific ApoE knock-out resulted in few differentially expressed genes in both 5xFAD and control mice; however, some rescue of 5xFAD associated neuronal networks may occur with microglial-specific ApoE knock-out as shown by weighted gene co-expression analysis. Altogether, our data indicates that microglial-expressed ApoE may not be necessary for plaque formation or for the microglial transcriptional shift into a Disease Associated Microglia state that is associated with reactivity to plaques but may be necessary for plaque homeostasis in disease and synaptic maintenance under normal conditions.


Subject(s)
Alzheimer Disease , Apolipoproteins E/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoproteins E/genetics , Disease Models, Animal , Gene Expression , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/metabolism
5.
Elife ; 102021 08 23.
Article in English | MEDLINE | ID: mdl-34423781

ABSTRACT

Microglia, the brain's resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white-matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.


Subject(s)
Lateral Ventricles/physiology , Microglia/physiology , White Matter/physiology , Animals , Brain , Disease Models, Animal , Homeostasis , Inflammation , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/cytology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
6.
Front Neural Circuits ; 13: 55, 2019.
Article in English | MEDLINE | ID: mdl-31555101

ABSTRACT

The assembly of uniquely organized sound localization circuits in the brainstem requires precise developmental mechanisms. Glial cells have been shown to shape synaptic connections in the retinogeniculate system during development, but their contributions to specialized auditory synapses have not been identified. Here we investigated the role of microglia in auditory brainstem circuit assembly, focusing on the formation and pruning of the calyx of Held in the medial nucleus of the trapezoid body (MNTB). Microglia were pharmacologically depleted in mice early in development using subcutaneous injections of an inhibitor of colony stimulating factor 1 receptor, which is essential for microglia survival. Brainstems were examined prior to and just after hearing onset, at postnatal days (P) 8 and P13, respectively. We found that at P13 there were significantly more polyinnervated MNTB neurons when microglia were depleted, consistent with a defect in pruning. Expression of glial fibrillary acidic protein (GFAP), a mature astrocyte marker that normally appears in the MNTB late in development, was significantly decreased in microglia-depleted mice at P13, suggesting a delay in astrocyte maturation. Our results demonstrate that monoinnervation of MNTB neurons by the calyx of Held is significantly disrupted or delayed in the absence of microglia. This finding may reflect a direct role for microglia in synaptic pruning. A secondary role for microglia may be in the maturation of astrocytes in MNTB. These findings highlight the significant function of glia in pruning during calyx of Held development.


Subject(s)
Brain Stem/physiology , Microglia/physiology , Synapses/physiology , Animals , Brain Stem/chemistry , Brain Stem/cytology , Female , Male , Mice , Mice, Inbred C57BL , Microglia/chemistry , Random Allocation , Synapses/chemistry
7.
Front Behav Neurosci ; 13: 57, 2019.
Article in English | MEDLINE | ID: mdl-30949036

ABSTRACT

It is well known that the brain changes in response to the surrounding environment. The hippocampus has been shown to be particularly susceptible to environmental enrichment, with effects ranging from the generation of new hippocampal neurons and synapses to an increased expression of neurotrophic factors. While many of these changes in the hippocampus are well documented in animals, our understanding of how environmental enrichment can apply to humans is more ambiguous. In animals, spatial exploration has been shown to be a clear way to elicit the effects of environmental enrichment and considering the role of the hippocampus in spatial navigation, which has been shown in both animal models and humans, it suggests a viable avenue for translation of environmental enrichment to humans. Here, we test the hypothesis that the spatial exploration of a virtual video game environment, can impact the hippocampus and lead to an improvement in hippocampal-dependent memory. Using the video game Minecraft, we tested four groups of participants, each playing on custom servers and focusing on different aspects of Minecraft to test the effects of both building and exploration over the course of 2 weeks. We found an improvement in hippocampus-associated memory from pre-test to post-test and that the degree of improvement was tied to both the amount of exploration of the Minecraft world and the complexity of the structures built within Minecraft. Thus, the number of enrichment participants engaged in while playing Minecraft was directly correlated with improvements in hippocampal-dependent memory outside of the game.

SELECTION OF CITATIONS
SEARCH DETAIL
...