Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 135: 358-367, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27771593

ABSTRACT

This telemetry study is an extension of our 1997-2006 research on historical mercury contamination on snowy egrets (Egretta thula) up to ~ 20 days of age. Findings from initial studies at the mercury-contaminated Carson River colony at Lahontan Reservoir (LR) and a similar-sized reference (REF) colony on the Humboldt River included mercury-related physiological, biochemical, histopathological and reproductive effects up to ~20 days of age; with poor water years (2000-04), i.e., reduced prey availability, exacerbating effects. Herein, we compare timing of dispersal and migration at LR vs. REF, but the primary question now addressed is "whether survival of young mercury-exposed snowy egrets from LR would be further compromised beyond ~20 days of age? " Based upon telemetry signals until 90-110 days of age (including dead bird counts and survival rate estimates), we conclude that mercury did not further compromise survival. Dead bird counts and survival rate estimates included time in the colony when fed by adults, plus the critical period when young dispersed from the colony to forage independently. The extended drought during this 3-year study was most critical in 2002 when production of ~20d old egrets at LR was only 0.24 young/nest. In 2002, survival rates were low at both colonies and we documented the highest counts of dead egrets for both colonies. We suggest the losses in 2002 beyond 20 days of age were more a function of prey availability influenced by drought than exposure to mercury, especially at LR, because higher mercury concentrations, higher survival rates and fewer dead birds were documented at LR in 2003 when water conditions improved. Furthermore, total mercury (THg) in blood in 2003 was more than double 2002 (geometric mean, 3.39 vs 1.47µg/g wet weight (ww). This higher THg exposure at LR in 2003 was associated with a redistribution of parent and post-dispersal feeding activities upstream (where there was higher mercury from historic mining) related to slightly improved water levels. When comparing the 3-year telemetry findings based upon ~20d old young at LR (blood THg, geo. means 1.47, 3.39 and 1.89µg/g ww), we found no evidence that age at dispersal, Julian date at dispersal, timing of migration, or pre-migration survival (~20 to ~100 days post-hatch) were adversely affected by elevated mercury.


Subject(s)
Birds/physiology , Droughts , Mercury/toxicity , Rivers , Water Pollutants, Chemical/toxicity , Animal Migration/drug effects , Animals , Birds/blood , Environmental Monitoring , Feeding Behavior , Industrial Waste/adverse effects , Mercury/blood , Mining , Nevada , Reproduction/drug effects , Survival Rate , Water Pollutants, Chemical/analysis
2.
Proc Natl Acad Sci U S A ; 109(52): 21201-7, 2012 Dec 26.
Article in English | MEDLINE | ID: mdl-23197837

ABSTRACT

Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure--without explicitly considering food webs--has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management.


Subject(s)
Conservation of Natural Resources , Food Chain , Rivers , Animals , Aquatic Organisms , Facility Design and Construction , United States
3.
Ecotoxicology ; 20(4): 682-97, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21340556

ABSTRACT

Several polybrominated biphenyl ether (PBDE) congeners were found in all 175 osprey (Pandion haliaetus) eggs collected from the Columbia River Basin between 2002 and 2009. ΣPBDE concentrations in 2008-2009 were highest in osprey eggs from the two lowest flow rivers studied; however, each river flowed through relatively large and populous metropolitan areas (Boise, Idaho and Spokane, Washington). We used the volume of Wastewater Treatment Plant (WWTP) discharge, a known source of PBDEs, as a measure of human activity at a location, and combined with river flow (both converted to millions of gallons/day) created a novel approach (an approximate Dilution Index) to relate waterborne contaminants to levels of these contaminants that reach avian eggs. This approach provided a useful understanding of the spatial osprey egg concentration patterns observed. Individual osprey egg concentrations along the Upper Willamette River co-varied with the Dilution Index, while combined egg data (geometric means) from rivers or segments of rivers showed a strong, significant relationship to the Dilution Index with one exception, the Boise River. There, we believe osprey egg concentrations were lower than expected because Boise River ospreys foraged perhaps 50-75% of the time off the river at ponds and lakes stocked with fish that contained relatively low ΣPBDE concentrations. Our limited temporal data at specific localities (2004-2009) suggests that ΣPBDE concentrations in osprey eggs peaked between 2005 and 2007, and then decreased, perhaps in response to penta- and octa-PBDE technical mixtures no longer being used in the USA after 2004. Empirical estimates of biomagnification factors (BMFs) from fish to osprey eggs were 3.76-7.52 on a wet weight (ww) basis or 4.37-11.0 lipid weight. Our earlier osprey study suggested that ΣPBDE egg concentrations >1,000 ng/g ww may reduce osprey reproductive success. Only two of the study areas sampled in 2008-2009 contained individual eggs with ΣPBDE concentrations >1,000 ng/g, and non-significant (P > 0.30) negative relationships were found between ΣPBDEs and reproductive success. Additional monitoring is required to confirm not only the apparent decline in PBDE concentrations in osprey eggs that occurred during this study, but also to better understand the relationship between PBDEs in eggs and reproductive success.


Subject(s)
Eagles/metabolism , Flame Retardants/metabolism , Halogenated Diphenyl Ethers/metabolism , Ovum/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Oregon , Rivers/chemistry , Washington , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data
4.
J Toxicol Environ Health B Crit Rev ; 13(7-8): 579-603, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21170810

ABSTRACT

Osprey (Pandion haliaetus) populations were adversely affected by DDT and perhaps other contaminants in the United States and elsewhere. Reduced productivity, eggshell thinning, and high DDE concentrations in eggs were the signs associated with declining osprey populations in the 1950s, 1960s, and 1970s. The species was one of the first studied on a large scale to bring contaminant issues into focus. Although few quantitative population data were available prior to the 1960s, many osprey populations in North America were studied during the 1960s and 1970s with much learned about basic life history and biology. This article reviews the historical and current effects of contaminants on regional osprey populations. Breeding populations in many regions of North America showed post-DDT-era (1972) population increases of varying magnitudes, with many populations now appearing to stabilize at much higher numbers than initially reported in the 1970s and 1980s. However, the magnitude of regional population increases in the United States between 1981 (first Nationwide Survey, ∼8,000 pairs), when some recovery had already occurred, 1994 (second survey, ∼14,200), and 2001 (third survey, ∼16,000-19,000), or any other years, is likely not a simple response to the release from earlier contaminant effects, but a response to multi-factorial effects. This indirect "contaminant effects" measurement comparing changes (i.e., recovery) in post-DDT-era population numbers over time is probably confounded by changing human attitudes toward birds of prey (shooting, destroying nests, etc.), changing habitats, changing fish populations, and perhaps competition from other species. The species' adaptation to newly created reservoirs and its increasing use of artificial nesting structures (power poles, nesting platforms, cell towers, channel markers, offshore duck blinds, etc.) are two important factors. The timing of the initial use of artificial nesting structures, which replaced declining numbers of suitable trees at many locations, varied regionally (much later in the western United States and Mexico). Because of the increasing use of artificial nesting structures, there may be more ospreys nesting in North America now than ever before. Now, with the impact of most legacy organic contaminants (DDT, other organochlorine [OC] pesticides, polychlorinated biphenyls [PCB], polychlorinated dibenzo-p-dioxins [PCDD], polychlorinated dibenzofurans (PCDF]) greatly reduced or eliminated, and some osprey populations showing evidence of stabilizing, the species was proposed as a Worldwide Sentinel Species for evaluating emerging contaminants. Several emerging contaminants are already being studied, such as polybrominated diphenyl ethers (PBDE) and perfluorinated acids and sulfonate compounds (PFC). The many advantages for continued contaminant investigations using the osprey include a good understanding of its biology and ecology, its known distribution and abundance, and its ability to habituate to humans and their activities, which permits nesting in some of the potentially most contaminated environments. It is a top predator in most ecosystems, and its nests are relatively easy to locate and study with little researcher impact on reproductive success.


Subject(s)
Environmental Pollutants/adverse effects , Falconiformes , Animals , DDT/history , Falconiformes/physiology , History, 20th Century , History, 21st Century , North America , Population Dynamics , Reproduction/drug effects
5.
Ecotoxicology ; 19(1): 153-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19697124

ABSTRACT

Locations of contaminant exposure for nesting migratory species are difficult to fully understand because of possible additional sources encountered during migration or on the wintering grounds. A portion of the migratory white-faced ibis (Plegadis chihi) nesting at Carson Lake, Nevada continues to be exposed to dichloro-diphenyldichloro-ethylene (DDE) with no change, which is unusual, observed in egg concentrations between 1985 and 2000. About 45-63% of the earliest nesting segment shows reduced reproductive success correlated with elevated egg concentrations of >4 microg/g wet weight (ww). Local prey (primarily earthworms) near nests contained little DDE so we tracked the migration and wintering movements of 20 adult males during 2000-2004 to determine the possible source. At various wintering sites, we found a correlation (r (2) = 0.518, P = 0.0125, N = 11) between DDE in earthworm composites and DDE in blood plasma of white-faced ibis wintering there, although the plasma was collected on their breeding grounds soon after arrival. The main source of DDE was wintering areas in the Mexicali Valley of Baja California Norte, Mexico, and probably the adjacent Imperial Valley, California, USA. This unusual continuing DDE problem for white-faced ibis is associated with: the long-term persistence in soil of DDE; the earthworms' ability to bioconcentrate DDE from soil; the proclivity of white-faced ibis to feed on earthworms in agricultural fields; the species's extreme sensitivity to DDE in their eggs; and perhaps its life history strategy of being a "capital breeder". We suggest surveying and sampling white-faced ibis eggs at nesting colonies, especially at Carson Lake, to monitor the continuing influence of DDE.


Subject(s)
Animal Migration , Birds/metabolism , Dichlorodiphenyl Dichloroethylene/analysis , Environmental Monitoring/statistics & numerical data , Oligochaeta/metabolism , Animals , California , Male , Mexico , Nevada , Ovum/chemistry , Telemetry
6.
Ecotoxicology ; 18(7): 802-13, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19513829

ABSTRACT

Spatial and temporal assessments and reports of polybrominated diphenyl ether (PBDE) flame retardants in birds remain sparse. In the present study, PBDEs were detected in all 120 osprey (Pandion haliaetus) eggs collected. The eggs were collected from nests along the Columbia, Willamette and Yakima rivers of Oregon (OR) and Washington (WA) and in Puget Sound (WA) between 2002 and 2007. PBDE congeners: 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154 (possible coelution with brominated biphenyl 153 [BB153]), 183, 190 (detected in one egg), 209 (not detected), and BB101 (only detected in 2006 and 2007) and total-alpha-hexabromocyclododecane (only detected in five eggs) were analyzed for in the egg samples. Eggs from reservoirs in the forested headwaters of the Willamette River (2002) contained the lowest concentrations of SigmaPBDEs (geometric mean [range], 98 [55.2-275] ng/g wet weight [ww]), while those from the middle Willamette River (2006) contained the highest (897 [507-1,880] ng/g ww). Concentrations in eggs from the Columbia River progressively increased downstream from Umatilla, OR (River Mile [RM] 286) to Skamokoa, WA (RM 29), which indicated additive PBDE sources along the river. In general, regardless of the year of egg collection, differences in PBDE concentrations reported in osprey eggs along the three major rivers studied (Columbia, Willamette and Yakima) seem to reflect differences in river flow (dilution effect) and the extent of human population and industry (source inputs) along the rivers. PBDE concentrations increased over time at two locations (Seattle, WA; Columbia River, RM 29-84) where temporal patterns could be evaluated. Only during 2006 (on the middle Willamette River, RM 61-157) and 2007 (on the lower Columbia River, RM 29-84) did SigmaPBDE concentrations in osprey eggs exceed 1,000 ng/g ww with negative relationships indicated at both locations between productivity and SigmaPBDE concentrations in eggs (P = 0.008, P = 0.057). Osprey eggs from Everett, WA contained nearly twice the SigmaPBDE concentration (geometric mean 239 vs. 141 ng/g ww, range 124-384 vs. 22.2-819 ng/g ww, P < or = 0.05) as double-crested cormorant (Phalacrocorax auritus) eggs collected at the same location and time, which is likely due to dietary differences. No significant relationship (all Ps > 0.147) was indicated between PBDE congeners (including SigmaPBDEs) and eggshell thickness at the concentrations observed in this study.


Subject(s)
Environmental Pollutants/toxicity , Falconiformes , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Ovum/drug effects , Reproduction/drug effects , Animals , Egg Shell/drug effects , Egg Shell/pathology , Environmental Monitoring , Environmental Pollutants/analysis , Environmental Pollutants/metabolism , Flame Retardants/analysis , Flame Retardants/metabolism , Halogenated Diphenyl Ethers/analysis , Halogenated Diphenyl Ethers/metabolism , Oregon , Ovum/chemistry , Ovum/metabolism , Washington
7.
J Toxicol Environ Health B Crit Rev ; 12(1): 25-44, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19117208

ABSTRACT

In the United States, many fish and wildlife species have been used nationwide to monitor environmental contaminant exposure and effects, including carcasses of the bald eagle (Haliaeetus leucocephalus), the only top avian predator regularly used in the past. Unfortunately, bald eagles are sensitive to investigator intrusion at the nest. Thus, the osprey (Pandion haliaetus) is evaluated as a potential sentinel species for aquatic ecosystems. Several characteristics support the choice of the osprey as a sentinel species, including: (1) fish-eating diet atop the aquatic food web, (2) long-lived with strong nest fidelity, (3) adapts to human landscapes (potentially the most contaminated), (4) tolerates short-term nest disturbance, (5) nests spatially distributed at regular intervals, (6) highly visible nests easily located for study, (7) ability to accumulate most, if not all, lipophilic contaminants, (8) known sensitivity to many contaminants, and (9) nearly a worldwide distribution. These osprey traits have been instrumental in successfully using the species to understand population distribution, abundance, and changes over time; the effects of various contaminants on reproductive success; how contaminants in prey (fish on biomass basis) contribute to egg concentrations (i.e., biomagnification factors); and spatial residue patterns. Data summarized include nesting population surveys, detailed nesting studies, and chemical analyses of osprey egg, organ, blood, and feather samples for contaminants that bioaccumulate and/or biomagnify in aquatic food webs; and biochemical evaluations of blood and various organs. Studies in the United States, Canada, Mexico, Europe, and elsewhere have shown the osprey to be a useful sentinel species for monitoring selected environmental contaminants, including some emerging contaminants in lakes, reservoirs, rivers, and estuaries.


Subject(s)
Environmental Monitoring , Falconiformes/physiology , Sentinel Surveillance , Water Pollutants/analysis , Water Pollutants/toxicity , Animals , Environmental Health/statistics & numerical data , Humans , Risk Assessment , Water Pollutants/metabolism
8.
J Toxicol Environ Health A ; 72(20): 1223-41, 2009.
Article in English | MEDLINE | ID: mdl-20077191

ABSTRACT

A 10-year study (1997-2006) was conducted to evaluate reproduction and health of aquatic birds in the Carson River Basin of northwestern Nevada (on the U.S. Environmental Protection Agency Natural Priorities List) due to high mercury (Hg) concentrations from past mining activities. This part of the study evaluated physiological associations with blood Hg in young snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax), and organ biochemistry and histopathological effects in snowy egrets on Lahontan Reservoir (LR) from the period 2002-2006. LR snowy egret geometric mean total Hg concentrations (microg/g ww) ranged from 1.5 to 4.8 for blood, 2.4 to 3.1 liver, 1.8 to 2.5 kidneys, 1.7 to 2.4 brain, and 20.5 to 36.4 feathers over these years. For night-herons, mean Hg for blood ranged from 1.6 to 7.4. Significant positive correlations were found between total Hg in blood and five plasma enzyme activities of snowy egrets suggesting hepatic stress. Histopathological findings revealed vacuolar changes in hepatocytes in LR snowy egrets as well as correlation of increased liver inflammation with increasing blood and tissue Hg. Hepatic oxidative effects were manifested by decreased hepatic total thiol concentration and glutathione reductase activity and elevated hepatic thiobarbituric acid-reactive subatances (TBARS), a measure of lipid peroxidation. However, other hepatic changes indicated compensatory mechanisms in response to oxidative stress, including decreased oxidized glutathione (GSSG) concentration and decreased ratio of GSSG to reduced glutathione. In young black-crowned night-herons, fewer correlations were apparent. In both species, positive correlations between blood total Hg and plasma uric acid and inorganic phosphorus were suggestive of renal stress, which was supported by histopathological findings. Both oxidative effects and adaptive responses to oxidative stress were apparent in kidneys and brain. Vacuolar change and inflammation in peripheral nerves were found to correlate with blood and tissue Hg. Hg-associated effects related to the immune system included alterations in specific white blood cells and lymphoid depletion in the bursa that were correlated with blood and tissue Hg. When the number of plasma variables that differed between young snowy egrets from the LR site and the reference site were compared between wet and drought years, over twice as many variables were affected during drought years. This resulted in many more variables correlating with blood total Hg during dry than during wet years, suggesting the combination of drought and Hg was more stressful than Hg alone. Drought may have exacerbated Hg-related effects as reported previously for overall productivity. This relationship was not evident in black-crowned night-herons, although data were more limited.


Subject(s)
Bird Diseases/chemically induced , Birds , Droughts , Mercury/toxicity , Rivers/chemistry , Animals , Bird Diseases/blood , Bird Diseases/epidemiology , Bird Diseases/pathology , Gastrointestinal Tract/chemistry , Gastrointestinal Tract/pathology , Kidney/chemistry , Kidney/pathology , Lymphoid Tissue/chemistry , Lymphoid Tissue/pathology , Mercury/blood , Mercury/chemistry , Mining , Nevada/epidemiology , Thyroid Gland/chemistry , Thyroid Gland/pathology , Time Factors , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
9.
Ecotoxicology ; 18(2): 151-73, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18830817

ABSTRACT

The osprey (Pandion haliaetus) population nesting along the main stem Willamette River and lower Santiam River was first studied to evaluate contaminants and reproductive rates in 1993 when 78 occupied nests were present. By 2001, the population increased to 234 occupied nests, a 13.7% annual rate of population increase. A sample egg was collected from each of a series of nests along the Upper River (river mile 55-187) in 1993, 2001 and 2006 to evaluate trends of persistent contaminants (organochlorine [OC] pesticides, polychlorinated biphenyls [PCBs], polychlorinated dibenzo-p-dioxins [PCDDs], and polychlorinated dibenzofurans [PCDFs]). Nearly all OC pesticide residues decreased significantly, e.g., p, p'-DDE (DDE) from 2,350 to 1,353 to 210 microg/kg wet weight (ww). PCBs followed a similar pattern over time, e.g., SigmaPCBs 688 to 245 to 182 microg/kg ww, while PCDDs and PCDFs showed a more precipitous decline (often 85-95%) between 1993 and 2001, with no egg analyses warranted in 2006. During 2001-2002, sample osprey eggs were also collected from nests at three Headwater Reservoirs and two lower reaches (Newberg Pool and Tidal Portland) of the Willamette River, as well as the lower portion of the Santiam River to evaluate spatial residue patterns. Significant differences were seldom detected among the different sampling areas for OC pesticides (probably due to small sample sizes), although higher concentrations were often seen in the lower reaches, e.g., DDE 901 microg/kg ww (Headwater Reservoirs), 1,353 (Upper River), 1,384 (Newberg Pool) and 2,676 (Tidal Portland). PCB congener concentrations in eggs were usually higher in the Tidal Portland reach than at other locations and often significantly higher than at the Headwater Reservoirs or Upper River. Mercury (first analyzed in eggs in 2001), PCDDs and PCDFs were extremely low in 2001/2002 with no significant spatial patterns. Whole fish composite samples of largescale sucker (Catastomus macrocheilus) and northern pikeminnow (Ptychocheilus oregonensis), which account for about 90% of the biomass in the diet of this osprey population, were also collected from the Willamette River in 1993 and 2001 and analyzed for the same contaminants as osprey eggs. Contaminant residues in fish from the Upper River decreased between 1993 and 2001, paralleling findings for osprey eggs. Likewise, spatial patterns for fish residues paralleled findings for osprey eggs from the different reaches in 2001. A second empirical estimate of biomagnification factors (BMFs) from fish to osprey eggs for OC pesticides, PCBs, PCDDs and PCDFs (ww and lipid weight [lw] basis) was calculated based on residue data collected in 2001. The two independent BMF estimates (1993 and 2001) for each contaminant from the Upper River provide a measure of consistency, e.g., DDE (ww) 87 and 79, (lw) 103 and 112; SigmaPCBs (ww) 11 and 8.4, (lw) 13 and 12. Mercury did not biomagnify from fish to osprey eggs (BMF = 0.60). Legacy contaminants investigated had limited (perhaps only DDE), if any, effects on reproductive success of the increasing osprey population nesting along the Willamette River by 2001.


Subject(s)
Environmental Monitoring/statistics & numerical data , Environmental Pollutants/analysis , Environmental Pollutants/pharmacokinetics , Falconiformes/metabolism , Fishes/metabolism , Ovum/chemistry , Animals , Benzofurans/analysis , Benzofurans/pharmacokinetics , Geography , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/pharmacokinetics , Mercury/analysis , Mercury/pharmacokinetics , Oregon , Pesticide Residues/analysis , Pesticide Residues/pharmacokinetics , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/pharmacokinetics , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Dibenzodioxins/pharmacokinetics , Polymers/analysis , Polymers/pharmacokinetics , Rivers
10.
Environ Monit Assess ; 145(1-3): 49-73, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18058253

ABSTRACT

This study reports hepatic concentrations and distribution patterns of select metals, organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in 180 male river otters (Lontra canadensis) collected from Oregon and Washington, 1994-1999. Seven regional locations of western Oregon and Washington were delineated based on associations with major population centers, industry or agriculture. Cadmium (Cd) was not found above 0.5 microg g(-1), dry weight (dw) in juveniles, but increased with age in adults though concentrations were generally low (nd-1.18 microg g(-1), dw). Regional geometric means for total mercury (THg) ranged from 3.63 to 8.05 microg g(-1), dw in juveniles and 3.46-12.6 microg g(-1) (dw) in adults. The highest THg concentration was 148 microg g(-1), dw from an apparently healthy adult male from the Olympic Peninsula of Washington. Although THg increased with age in adult otters, the occurrence of the more toxic form methylmercury (MeHg) was not evaluated. Mean OC and PCB concentrations reported in this study declined dramatically from those reported in 1978-1979 from the lower Columbia River. Organochlorine pesticide and metabolite means for both juvenile and adult river otter males were all below 100 microg kg(-1), wet weight (ww), with only DDE, DDD and HCB having individual concentrations exceeding 500 microg kg(-1), ww. Mean SigmaPCB concentrations in both juvenile and adult male otters were below 1 microg g(-1) for all regional locations. Mean juvenile and adult concentrations of non-ortho substituted PCBs, PCDDs and PCDFs were in the low ng kg(-1) for all locations studied.


Subject(s)
Otters , Water Pollutants, Chemical/analysis , Animals , Fresh Water , Male , Oregon , Washington
11.
Ecotoxicology ; 17(2): 117-31, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17994274

ABSTRACT

Mercury concentrations in the floodplain of the Carson River Basin in northwestern Nevada are some of the highest ever reported in a natural system. Thus, a portion of the basin including Lahontan Reservoir was placed on the U.S. Environmental Protection Agency's Natural Priorities List for research and cleanup. Preliminary studies indicated that reproduction in piscivorous birds may be at risk. Therefore, a 10-year study (1997--2006) was conducted to evaluate reproduction of snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) nesting on Gull Island in Lahontan Reservoir. Special attention was given to the annual flow of the Carson River, the resultant fluctuation of this irrigation reservoir, and the annual exposure of snowy egrets and night-herons to methylmercury (MeHg). The dynamic character of the river due to flooding and drought (drought effect) influenced snowy egret and night-heron reproduction more so than did MeHg contamination of eggs. During an extended drought (2000--2004) in the middle of the study, snowy egret nests containing eggs with concentrations of MeHg (measured as total mercury [THg] approximately 100% MeHg) > or =0.80 microg THg/g, ww, all failed, but in 1997 and 2006 (wet years with general flooding), substantial numbers of young were produced (but fewer than at nests where eggs contained <0.80 microg/g). Thus, a variable reproductive threshold of tolerance to MeHg may be associated with habitat quality (food type and abundance). Clearly, drought was the most important factor affecting snowy egret annual productivity. In contrast to snowy egrets, night-herons generally had fewer nests meeting the 0.80 microg THg/g criterion, and those above the criterion were less sensitive to mercury than were snowy egrets. Furthermore, night-herons appeared more tolerant of drought conditions than snowy egrets because they nested earlier, selected more protected nesting sites, and had a more generalist diet that provided additional food options including terrestrial organisms, which also reduced exposure to MeHg. A putative biological effect threshold of 2.0 microg THg/g in whole blood for young of both species was evaluated, which was frequently exceeded, but with no evidence, while still in the colony, of an association with direct mortality. An evaluation of physiological associations with blood residues and post-fledging survival will be presented in future reports in this series.


Subject(s)
Birds , Disasters , Methylmercury Compounds/toxicity , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Adaptation, Physiological , Animals , Birds/metabolism , Dose-Response Relationship, Drug , Ecosystem , Environmental Monitoring , Feeding Behavior/drug effects , Fertility/drug effects , Fishes/metabolism , Fresh Water , Methylmercury Compounds/blood , Nesting Behavior/drug effects , Nevada , Risk Assessment , Species Specificity , Time Factors , Water Pollutants, Chemical/blood , Zygote/drug effects , Zygote/metabolism
12.
Ecol Appl ; 17(4): 1223-33, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17555230

ABSTRACT

Migratory behavior can be an important factor in determining contaminant exposure in avian populations. Accumulation of organochlorine (OC) pesticides while birds are wintering in tropical regions has been cited often as the reason for high concentrations in migrant populations. To explore this issue, we satellite tracked 16 Ospreys (Pandion haliaetus) over the period 1996-2003 from breeding sites in British Columbia, Canada, and integrated the results into a database on 15 Ospreys that were satellite tracked over the period 1995-1999, from breeding locations in Washington and Oregon, USA. Data on wintering sites of 31 Ospreys in Mexico and Central America were used for spatially targeted sampling of prey fish. Concentrations of the main organochlorine contaminant, p,p'-dichloro-diphenyl-dichloroethylene (DDE), in fish composites from Mexico ranged from 0.005 to 0.115 nicrog/g wet mass. Significant differences existed among fish families in p,p'-DDE, total dichloro-diphenyl-trichloroethane (sigmaDDT), sigmachlordanes, and total polychlorinated biphenyls (sigmaPCBs). Catfish (family Ariidae) generally had significantly higher levels of DDT metabolites and other organochlorine contaminants compared to other fish families collected. Differences in prey contaminant levels were detected among the collection sites around coastal Mexico, with fish from Veracruz State generally having higher levels of DDT metabolites, sigmachlordanes, sigmaPCBs, and hexachlorobenzene. Eggs collected from 16 nests throughout the Pacific Northwest (nine from British Columbia, seven from Oregon and Washington) where Ospreys had been satellite tagged, showed marked variation in levels of DDT metabolites (p,p'-DDE; range 0.02-10.14 microg/g). Wintering site had no significant effect on contaminant concentrations in sample eggs from those specific Ospreys; rather concentrations of p,p'-DDE, were predicted by breeding sites with highest levels in eggs of Ospreys breeding in the lower Columbia River, consistent with published reports of continued high concentrations of DDT and related compounds in that system.


Subject(s)
Environmental Pollutants , Predatory Behavior , Raptors , Telemetry/methods , Animals , Fishes
13.
Environ Pollut ; 145(1): 374-81, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16707197

ABSTRACT

Current-use chlorophenoxy herbicides including 2,4-dichlorophenoxyacetic acid, dicamba, triclopyr, dicamba, dimethyl tetrachloroterephthalate (DCPA or dacthal), and the metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and the fungicide, chlorothalonil, were investigated in the eggs of osprey (Pandion haliaetus) that were collected from 15 sites from five study areas Puget Sound/Seattle area of Washington State, USA. DCPA differs from acidic chlorophenoxy herbicides, and is not readily hydrolyzed to free acid or acid metabolites, and thus we developed a new method. Of the 12 chlorophenoxy herbicides and chlorothalonil analyzed only DCPA could be quantified at six of these sites (2.0 to 10.3 pg/g fresh weight). However, higher levels (6.9 to 85.5 pg/g fresh weight) of the unexpected DCPA structural isomer, dimethyl tetrachlorophthalate (diMe-TCP) were quantified in eggs from all sites. diMe-TCP concentrations tended to be higher in eggs from the Everett Harbor area. As diMe-TCP is not an industrial product, and not commercially available, the source of diMe-TCP is unclear. Regardless, these findings indicate that DCPA and diMe-TCP can be accumulated in the food chain of fish-eating osprey, and transferred in ovo to eggs, and thus may be of concern to the health of the developing chick and the general reproductive health of this osprey population.


Subject(s)
Eggs/analysis , Fungicides, Industrial/analysis , Herbicides/analysis , Nitriles/analysis , Phthalic Acids/analysis , Raptors , 2,4-Dichlorophenoxyacetic Acid/analysis , Animals , Benzoates/analysis , Dicamba/analysis , Environmental Exposure/adverse effects , Glycolates/analysis , Isomerism , Washington
14.
Ecotoxicology ; 14(7): 709-25, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16160750

ABSTRACT

To evaluate mercury (Hg) exposure and possible adverse effects of Hg on American dipper (Cinclus mexicanus) reproduction, we collected eggs and nestling feathers and the larval/nymph form of three Orders of aquatic macroinvertebrates (Ephemeroptera, Plecoptera and Trichoptera = EPT) important in their diet from three major headwater tributaries of the upper Willamette River, Oregon in 2002. The Coast Fork Willamette River is contaminated with Hg due to historical cinnabar (HgS) mining at the Black Butte Mine; the Row River is affected by past gold-mining operations located within the Bohemia Mining District, where Hg was used in the amalgamation process to recover gold; and the Middle Fork Willamette River is the reference area with no known mining. Methyl mercury (MeHg) concentrations (geometric mean) in composite EPT larvae (111.9 ng/g dry weight [dw] or 19.8 ng/g wet weight [ww]), dipper eggs (38.5 ng/g ww) and nestling feathers (1158 ng/g ww) collected from the Coast Fork Willamette were significantly higher than MeHg concentrations in EPT and dipper samples from other streams. Total mercury (THg) concentrations in surface sediments along the same Hg-impacted streams were investigated by others in 1999 (Row River tributaries) and 2002 (Coast Fork). The reported sediment THg concentrations paralleled our biological findings. Dipper breeding territories at higher elevations had fewer second clutches; however, dipper reproductive success along all streams (including the lower elevation and most Hg-contaminated Coast Fork), was judged excellent compared to other studies reviewed. Furthermore, MeHg concentrations in EPT samples from this study were well below dietary concentrations in other aquatic bird species, such as loons and ducks, reported to cause Hg-related reproductive problems. Our data suggest that either dipper feathers or EPT composites used to project MeHg concentrations in dipper feathers (with biomagnification factor of 10-20x) may be used, but with caution, to screen headwater streams for potential Hg-related effects on dippers. When actual feather concentrations or projected feather concentrations are equal to or lower than concentrations reported for the Coast Fork, dippers are expected to reproduce well (assuming adequate prey and suitable nest sites). When Hg concentrations are substantially higher, more detailed investigations may be required. Birds feeding almost exclusively on fish (e.g., osprey [Pandion haliaetus]) and usually found further downstream from the headwaters would not be adequately represented by dippers given the higher MeHg concentrations in fish resulting from biomagnification, compared to lower trophic level invertebrates.


Subject(s)
Mercury/analysis , Methylmercury Compounds/analysis , Passeriformes/metabolism , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , Feathers/chemistry , Food Chain , Gold , Insecta , Larva/chemistry , Mercury Compounds , Mining , Oregon , Passeriformes/physiology , Reproduction/drug effects , Rivers , Zygote/chemistry
15.
Environ Monit Assess ; 84(3): 275-315, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12807265

ABSTRACT

A migratory population of 78 pairs of Osprey (Pandion haliaetus) nesting along the Willamette River in western Oregon was studied in 1993. The study was designed to determine contaminant concentrations in eggs, contaminant concentrations in fish species predominant in the Ospreys diet, and Biomagnification Factors (BMFs) of contaminants from fish species eaten to Osprey eggs. Ten Osprey eggs and 25 composite samples of fish (3 species) were used to evaluate organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). Mercury was also analyzed in fish. Geometric mean residues in Osprey eggs were judged low, e.g., DDE 2.3 microg g(-1) wet weight (ww), sigma PCBs 0.69 microg g(-1), 2,3,7,8-TCDD 2.3 ng kg(-1), and generally well below known threshold values for adverse effects on productivity, and the population was increasing. Osprey egg residue data presented by River Mile (RM) are discussed, e.g., higher PCDDs were generally found immediately downstream of paper mills and eggs from the Willamette River had significantly elevated PCBs and PCDDs compared to reference eggs collected nearby in the Cascade Mountains. Prey remains at nest sites indicated that the Largescale Sucker (Catostomus macrocheilus) and Northern Pikeminnow (Ptychocheilus oregonensis) accounted for an estimated 90.1% of the biomass in the Osprey diet, and composite samples of these two species were collected from different sampling sites throughout the study area for contaminant analyses. With the large percentage of the fish biomass in the Osprey diet sampled for contaminants (and fish eaten by Ospreys similar in size to those chemically analyzed), and fish contaminant concentrations weighted by biomass intake, a mean BMF was estimated from fish to Osprey eggs for the large series of contaminants. BMFs ranged from no biomagnification (0.42) for 2,3,7,8-TCDF to 174 for OCDD. Our findings for the migratory Osprey were compared to BMFs for the resident Herring Gull (Larus argentatus), and differences are discussed. We believe a BMF approach provides some basic understanding of relationships between contaminant burdens in prey species of fish-eating birds and contaminants incorporated into their eggs, and may prove useful in understanding sources of contaminants in migratory species although additional studies are needed.


Subject(s)
Cypriniformes , Eggs/analysis , Food Chain , Pesticides/toxicity , Polychlorinated Biphenyls/toxicity , Raptors , Water Pollutants, Chemical/toxicity , Animals , Cypriniformes/physiology , Fresh Water/analysis , Industrial Waste , Mercury/analysis , Oregon , Pesticides/isolation & purification , Polychlorinated Biphenyls/isolation & purification , Raptors/physiology , Reproduction/drug effects , Water Pollutants, Chemical/analysis
16.
J Wildl Dis ; 39(4): 914-7, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14733290

ABSTRACT

We report the first case of uric acid nephrolithiasis in a free-ranging river otter (Lontra canadensis). A 7 yr old male river otter collected from the Skagit River of western Washington (USA) had bilateral nephrolithiasis and severely enlarged ureters (one of 305 examined [0.33%]). The uroliths were 97% uric acid and 3% protein. Microscopic changes in the kidney were confined to expansion of renal calyces, minor loss of medullary tissue, and multifocal atrophy of the cortical tubules. No inflammation was observed in either kidney or the ureters. The ureters were enlarged due to marked hypertrophy of smooth muscle plus dilation of the lumen. Fusion of the major calyces into a single ureteral lumen was several cm distal to that of two adult male otters used as histopathologic control specimens. This case report is part of a large contaminant study of river otters collected from Oregon and Washington. It is important to understand diseases and lesions of the otter as part of our overall evaluation of this population.


Subject(s)
Kidney Calculi/veterinary , Otters , Ureter/pathology , Water Pollutants/adverse effects , Animals , Animals, Wild , Hypertrophy/veterinary , Kidney/pathology , Kidney Calculi/pathology , Male , Uric Acid/analysis , Washington
17.
Ecotoxicology ; 11(4): 213-31, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12211695

ABSTRACT

Contemporary mercury interest relates to atmospheric deposition, contaminated fish stocks and exposed fish-eating wildlife. The focus is on methylmercury (MeHg) even though most contamination is of inorganic (IoHg) origin. However, IoHg is readily methylated in aquatic systems to become more hazardous to vertebrates. In response to a classic episode of historical (1859-1890) IoHg contamination, we studied fish-eating birds nesting along the lower Carson River, Nevada. Adult double-crested cormorants (Phalacrocorax auritus), snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) contained very high concentrations of total mercury (THg) in their livers (geo. means 134.8 microg/g wet weight (ww), 43.7 and 13.5, respectively) and kidneys (69.4, 11.1 and 6.1, respectively). Apparently tolerance of these concentrations was possible due to a threshold-dependent demethylation coupled with sequestration of resultant IoHg. Demethylation and sequestration processes also appeared to have reduced the amount of MeHg redistributed to eggs. However, the relatively short time spent by adults in the contaminated area before egg laying was also a factor in lower than expected concentrations of mercury in eggs. Most eggs (100% MeHg) had concentrations below 0.80 microg/g ww, the putative threshold concentration where reproductive problems may be expected; there was no conclusive evidence of mercury-related depressed hatchability. After hatching, the young birds were fed diets by their parents averaging 0.36-1.18 microgMeHg/g ww through fledging. During this four to six week period, accumulated mercury concentrations in the organs of the fledglings were much lower than found in adults, but evidence was detected of toxicity to their immune (spleen, thymus, bursa), detoxicating (liver, kidneys) and nervous systems. Several indications of oxidative stress were also noted in the fledglings and were most apparent in young cormorants containing highest concentrations of mercury. This stress was evidenced by increased thiobarbituric acid-reactive substances, low activities of enzymes related to glutathione metabolism and low levels of reduced thiols, plus an increase in the ratio of oxidized to reduced glutathione. At lower concentrations of mercury, as was found in young egrets, we observed elevated activities of protective hepatic enzymes, which could help reduce oxidative stress. Immune deficiencies and neurological impairment of fledglings may affect survivability when confronted with the stresses of learning to forage and the ability to complete their first migration.


Subject(s)
Birds/metabolism , Environmental Exposure/analysis , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Eggs/analysis , Environmental Monitoring , Feathers/chemistry , Fresh Water , Nesting Behavior , Nevada , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...