Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 99(4): 1810-25, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19774656

ABSTRACT

N-acyl-urea derivatives of carbamazepine (CBZ) were synthesized through the reactions of iminostilbene with acyl-isocyanates to form N-glycyl-carbamazepine (N-Gly-CBZ, after a deprotection step) or N-acetyl-carbamazepine (N-acetyl-CBZ). N-Gly-CBZ was isolated as its water-soluble HCl salt and was designed to act as a prodrug and convert to CBZ and glycine in vivo by enzymatic cleavage of the acyl-urea bond. The stability pH-rate profiles for N-Gly-CBZ and N-acetyl-CBZ were determined. The stability of N-Gly-CBZ was found to range over four orders of magnitude with its greatest stability at pH 3-4 and a t(90) value of 5.9 day at pH 4 at 25 degrees C. From the fit of the pH rate profile two pK(a) values were estimated to be 7.2 (terminal amine) and 10.0 (imide), which were independently verified using UV-visible spectroscopic analysis. The solubility of N-Gly-CBZ in aqueous solution was determined in the range of pH 5.5-7.5. The intrinsic solubility of the neutral form of the prodrug was found to be 4.4 mg/mL, and the solubility of the prodrug increased exponentially (log linear) as pH was decreased below its pK(a1) value. N-Gly-CBZ was found to have an aqueous solubility in excess of 50 mg/mL at pH 4. The presence of N-Gly-CBZ was found to increase the aqueous solubility of CBZ, a degradation product. CBZ showed an 8.6-fold greater solubility in an aqueous solution containing 23 mg/mL of N-Gly-CBZ than in water alone. The solubilization of CBZ by N-Gly-CBZ was investigated by examining the diffusion coefficients of the predominant species in D(2)O and was found to be more consistent with stacking complex formation than micelle formation. The stability of N-Gly-CBZ makes a ready-to-use parenteral formulation impractical, but a freeze-dried preparation for reconstitution appears to be feasible.


Subject(s)
Carbamazepine/chemistry , Glycine/chemistry , Prodrugs/chemistry , Carbamazepine/chemical synthesis , Diffusion , Drug Stability , Glycine/chemical synthesis , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Prodrugs/chemical synthesis , Solubility , Temperature , Water/chemistry
2.
J Org Chem ; 75(1): 86-94, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19954175

ABSTRACT

Three photoaffinity labeled derivatives of epothilone D were prepared by total synthesis, using efficient novel asymmetric synthesis methods for the preparation of two important synthetic building blocks. The key step for the asymmetric synthesis of (S,E)-3-(tert-butyldimethylsilyloxy)-4-methyl-5-(2-methylthiazol-4-yl)pent-4-enal involved a ketone reduction with (R)-Me-CBS-oxazaborolidine. For the synthesis of (5S)-5,7-di[(tert-butyldimethylsilyl)oxy]-4,4-dimethylheptan-3-one an asymmetric Noyori reduction of a beta-ketoester was employed. The C26 hydroxyepothilone D derivative was constructed following a well-established total synthesis strategy and the photoaffinity labels were attached to the C26 hydroxyl group. The photoaffinity analogues were tested in a tubulin assembly assay and for cytotoxicity against MCF-7 and HCT-116 cancer cell lines. The 3- and 4-azidobenzoic acid analogues were found to be as active as epothilone B in a tubulin assembly assay, but demonstrated significantly reduced cellular cytotoxicity compared to epothilone B. The benzophenone analogue was inactive in both assays. Docking and scoring studies were conducted that suggested that the azide analogues can bind to the epothilone binding site, but that the benzophenone analogue undergoes a sterically driven ligand rearrangement that interrupts all hydrogen bonding and therefore protein binding. Photoaffinity labeling studies with the 3-azidobenzoic acid derivative did not identify any covalently labeled peptide fragments, suggesting that the phenylazido side chain was predominantly solvent-exposed in the bound conformation.


Subject(s)
Epothilones/chemical synthesis , Molecular Probes/chemical synthesis , Photoaffinity Labels/chemical synthesis , Tubulin Modulators/chemical synthesis , Tubulin/chemistry , Epothilones/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Photoaffinity Labels/chemistry , Tubulin Modulators/chemistry
3.
Bioorg Med Chem Lett ; 19(12): 3293-6, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19428248

ABSTRACT

The total synthesis of 22-(3-azidobenzoyloxy)methyl epothilone C is described as a potential photoaffinity probe to elucidate the beta-tubulin binding site. A sequential Suzuki-aldol-Yamaguchi macrolactonization strategy was utilized employing a novel derivatized C1-C6 fragment. The C22-functionalized analog exhibited good activity in microtubule assembly assays, but cytotoxicity was significantly reduced. Molecular modeling simulations indicated that excessive steric bulk in the C22 position is accommodated by the large hydrophobic pocket of the binding site. Photoaffinity labeling studies were inconclusive suggesting non-specific labeling.


Subject(s)
Epothilones/chemical synthesis , Photoaffinity Labels/chemistry , Tubulin/chemistry , Epothilones/chemistry , Humans , Molecular Probes/chemical synthesis , Tubulin Modulators
4.
Bioorg Med Chem Lett ; 18(17): 4904-6, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18684624

ABSTRACT

The total synthesis of C25-benzyloxy epothilone C is described. A sequential Suzuki-Aldol-Yamaguchi macrolactonization strategy was utilized employing a novel derivatized C8-C12 fragment. The C25-benzyloxy analog exhibited significantly reduced biological activity in microtubule assembly and cytotoxicity assays. Molecular modeling simulations indicated that excessive steric bulk in the C25 position may reduce activity by disrupting key hydrogen bonds that are crucial for epothilone binding to beta-tubulin.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Breast Neoplasms/drug therapy , Epothilones/chemical synthesis , Epothilones/toxicity , Tubulin Modulators/chemical synthesis , Tubulin Modulators/toxicity , Tubulin/biosynthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Cell Line, Tumor , Epothilones/chemistry , Humans , Hydrogen Bonding/drug effects , Tubulin/metabolism , Tubulin Modulators/chemistry
5.
Phytochemistry ; 68(14): 2015-22, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17574638

ABSTRACT

Natural product substances have historically served as the most significant source of new leads for pharmaceutical development. However, with the advent of robotics, bioinformatics, high throughput screening (HTS), molecular biology-biotechnology, combinatorial chemistry, in silico (molecular modeling) and other methodologies, the pharmaceutical industry has largely moved away from plant derived natural products as a source for leads and prospective drug candidates. Can, or will, natural products ever recapture the preeminent position they once held as a foundation for drug discovery and development? The challenges associated with development of natural products as pharmaceuticals are illustrated by the Taxol story. Several misconceptions, which constrain utilization of plant natural products, for discovery and development of pharmaceuticals, are addressed to return natural products to the forefront.


Subject(s)
Biological Products/chemistry , Biological Products/metabolism , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/trends , Plants/chemistry , Plants/metabolism , Animals , Biological Products/pharmacology , Humans , Phytotherapy/trends , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...