Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 324 ( Pt 2): 503-9, 1997 Jun 01.
Article in English | MEDLINE | ID: mdl-9182710

ABSTRACT

We recently developed a method of purifying amyloplasts from developing maize (Zea mays L.) endosperm tissue [Neuhaus, Thom, Batz and Scheibe (1993) Biochem. J. 296, 395-401]. In the present paper we analyse how glucose 6-phosphate (Glc6P) and other phosphorylated compounds enter the plastid compartment. Using a proteoliposome system in which the plastid envelope membrane proteins are functionally reconstituted, we demonstrate that this type of plastid is able to transport [14C]Glc6P or [32P]Pi in counter exchange with Pi, Glc6P, dihydroxyacetone phosphate and phosphoenolpyruvate. Glucose 1-phosphate, fructose 6-phosphate and ribose 5-phosphate do not act as substrates for counter exchange. Besides hexose phosphates, ADP-glucose (ADPGlc) also acts as a substrate for starch synthesis in isolated maize endosperm amyloplasts. This process exhibits saturation kinetics with increasing concentrations of exogenously supplied [14C]ADPGlc, reaching a maximum at 2mM. Ultrasonication of isolated amyloplasts greatly reduces the rate of ADPGlc-dependent starch synthesis, indicating that the process is dependent on the intactness of the organelles. The plastid ATP/ADP transporter is not responsible for ADPGlc uptake. Data are presented that indicate that ADPGlc is transported by another translocator in counter exchange with AMP. To analyse the physiology of starch synthesis in more detail, we examined how Glc6P- and ADPGlc-dependent starch synthesis in isolated maize endosperm amyloplasts interact. Glc6P-dependent starch synthesis is not inhibited by increasing concentrations of ADPGlc. In contrast, the rate of ADPGlc-dependent starch synthesis is reduced by increasing concentrations of ATP necessary for Glc6P-dependent starch synthesis. The possible modes of inhibition of ADPGlc-dependent starch synthesis by ATP are discussed with respect to the stromal generation of AMP required for ADPGlc uptake.


Subject(s)
Adenosine Diphosphate Glucose/physiology , Starch/biosynthesis , Zea mays/metabolism , Adenine Nucleotides/metabolism , Biological Transport , Cell Membrane/metabolism , Glucose-6-Phosphate/physiology , Kinetics , Phosphorylation , Plant Proteins/biosynthesis , Plastids/metabolism , Proteolipids/metabolism , Seeds/cytology , Seeds/metabolism
2.
Biochim Biophys Acta ; 1200(2): 148-54, 1994 Jul 06.
Article in English | MEDLINE | ID: mdl-8031834

ABSTRACT

Recently, we have demonstrated that isolated cauliflower-bud amyloplasts incorporate glucose 6-phosphate at high rates into newly synthesized starch (Neuhaus et al. (1993) Plant Physiol. 101, 573-578). Here we have analyzed the incorporation of radioactively labeled glucose and ADPglucose into newly synthesized starch. It could be shown that glucose incorporation into starch exhibits a typical substrate saturation behaviour and is linear with time for at least 40 min. The incorporation of glucose is strongly dependent upon the intactness of the plastids and upon the presence of both, ATP and 3-phosphoglyceric acid. Using 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) we showed that glucose is taken up into isolated cauliflower-bud amyloplasts as the free glucose molecule, rather than as glucose 6-phosphate. Glucose incorporation into newly synthesized starch is strongly inhibited in the presence of low concentrations of glucose 6-phosphate. The radioactively labeled glucose moiety of ADPglucose is also incorporated into starch. This incorporation can be saturated at increased concentrations of ADPglucose. ATP significantly inhibits the incorporation of the glucose moiety of ADPglucose into starch. This inhibition can be reinforced by the additional presence of glucose 6-phosphate. Glucose 6-phosphate-dependent starch synthesis is not strongly inhibited in the presence of glucose or ADPglucose indicating that glucose 6-phosphate is the precursor for starch synthesis in isolated cauliflower-bud amyloplasts.


Subject(s)
Adenosine Diphosphate Glucose/metabolism , Glucose/metabolism , Plants, Edible/metabolism , Starch/biosynthesis , Vegetables/metabolism
3.
Plant Physiol ; 101(2): 573-578, 1993 Feb.
Article in English | MEDLINE | ID: mdl-12231712

ABSTRACT

Intact plastids from cauliflower (Brassica oleracea var Prince de Bretagne) buds were isolated according to the method described by Journet and Douce (E.P. Journet and R. Douce [1985] Plant Physiol 79: 458-467). Incubation of these plastids with various 14C-labeled compounds revealed that glucose-6-phosphate can act as a precursor for starch synthesis. However, significant rates (incorporation of 120 nmol glucose mg-1 protein h-1) could only be observed when both 3-phosphoglyceric acid and ATP were present as well. Starch synthesis in isolated plastids was strongly dependent upon the intactness of the organelle. The presence of a high-affinity ATP/ADP translocator with a Km for ATP of 12 [mu]M was demonstrated by uptake experiments with [14C]ATP. ADP inhibited both ATP uptake and effector-stimulated starch synthesis. Effector-stimulated glucose-6-phosphate-dependent starch synthesis was not significantly influenced by fructose-6-phosphate or 2-deoxyglucose-6-phosphate but was strongly inhibited by triose phosphate and inorganic phosphate. Starch synthesis was also inhibited by 4,4[prime]-diisothio-cyanostilbene-2,2[prime]-disulfonate, which is known to be a potent inhibitor of the chloroplast phosphate translocator. The data presented here support the view that starch biosynthesis in heterotrophic tissues is powered by increasing levels of cytosolic 3-phosphoglyceric acid and ATP when glucose-6-phosphate is available.

SELECTION OF CITATIONS
SEARCH DETAIL
...