Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Res Methodol ; 24(1): 114, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760718

ABSTRACT

BACKGROUND: Smoking is a critical risk factor responsible for over eight million annual deaths worldwide. It is essential to obtain information on smoking habits to advance research and implement preventive measures such as screening of high-risk individuals. In most countries, including Denmark, smoking habits are not systematically recorded and at best documented within unstructured free-text segments of electronic health records (EHRs). This would require researchers and clinicians to manually navigate through extensive amounts of unstructured data, which is one of the main reasons that smoking habits are rarely integrated into larger studies. Our aim is to develop machine learning models to classify patients' smoking status from their EHRs. METHODS: This study proposes an efficient natural language processing (NLP) pipeline capable of classifying patients' smoking status and providing explanations for the decisions. The proposed NLP pipeline comprises four distinct components, which are; (1) considering preprocessing techniques to address abbreviations, punctuation, and other textual irregularities, (2) four cutting-edge feature extraction techniques, i.e. Embedding, BERT, Word2Vec, and Count Vectorizer, employed to extract the optimal features, (3) utilization of a Stacking-based Ensemble (SE) model and a Convolutional Long Short-Term Memory Neural Network (CNN-LSTM) for the identification of smoking status, and (4) application of a local interpretable model-agnostic explanation to explain the decisions rendered by the detection models. The EHRs of 23,132 patients with suspected lung cancer were collected from the Region of Southern Denmark during the period 1/1/2009-31/12/2018. A medical professional annotated the data into 'Smoker' and 'Non-Smoker' with further classifications as 'Active-Smoker', 'Former-Smoker', and 'Never-Smoker'. Subsequently, the annotated dataset was used for the development of binary and multiclass classification models. An extensive comparison was conducted of the detection performance across various model architectures. RESULTS: The results of experimental validation confirm the consistency among the models. However, for binary classification, BERT method with CNN-LSTM architecture outperformed other models by achieving precision, recall, and F1-scores between 97% and 99% for both Never-Smokers and Active-Smokers. In multiclass classification, the Embedding technique with CNN-LSTM architecture yielded the most favorable results in class-specific evaluations, with equal performance measures of 97% for Never-Smoker and measures in the range of 86 to 89% for Active-Smoker and 91-92% for Never-Smoker. CONCLUSION: Our proposed NLP pipeline achieved a high level of classification performance. In addition, we presented the explanation of the decision made by the best performing detection model. Future work will expand the model's capabilities to analyze longer notes and a broader range of categories to maximize its utility in further research and screening applications.


Subject(s)
Electronic Health Records , Natural Language Processing , Smoking , Humans , Denmark/epidemiology , Electronic Health Records/statistics & numerical data , Smoking/epidemiology , Machine Learning , Female , Male , Middle Aged , Neural Networks, Computer
2.
Transl Lung Cancer Res ; 12(12): 2392-2411, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38205206

ABSTRACT

Background: Lung cancer (LC) is the leading cause of cancer related deaths, and several countries are implementing screening programs. Risk models have been introduced to refine the LC screening criteria, but the use of real-world data for this task demands a robust data infrastructure and quality. In this retrospective cohort study, we aim to address the different relevant risk factors in terms of data sources, descriptive statistics, completeness and quality. Methods: Data on comorbidity, prescription medication, smoking history, consultations, symptoms, familial predispositions, exposures, laboratory data among others were collected for all patients examined on a risk of LC over a 10-year period in the Region of Southern Denmark. Data were delivered from the regional data warehouse as well as the Danish Lung Cancer Registry. Associations between LC and non-LC groups were examined through Chi-squared test (categorical variables) and Wilcoxon signed-rank test (continuous variables that were non-parametric). These associations were investigated on both the original datasets and the subset of patients with complete data. Results: The number of examined individuals increased over the study period and more patients were diagnosed with LC in stage I-II, from 18% in 2009 to 31% in 2018. LC patients were more likely to be older, smoker, with a registered prescription of the included medication. They also exhibited differences in laboratory analysis indicating inflammation and hyponatremia. Weight loss, fatigue and pain were more prevalent in the LC group, while hemoptysis and fever were more common among the non-LC patients. Advanced-stage LC patients experienced a higher rate of symptoms compared to those in the low stages. Within the sub-cohort with complete dataset results, most observed trends persisted, although data on comorbidities were susceptibility to change. Conclusions: This study provides key insights into LC risk assessment using a robust dataset of patients examined for suspected LC. A consistent positive trend in early-stage LC diagnosis was observed throughout the study period. LC patients exhibited distinct smoking behaviors, medication patterns, variations in lab results, and specific symptoms. These discoveries have the potential to enhance discrimination in machine learning-based prediction models, particularly those capable of handling complex distributions. Serving as a detailed account of real-world data collection and processing, the study establishes a foundation for future development of prediction models aimed at facilitating the early referral of LC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...