Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(27): 18663-18670, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29955742

ABSTRACT

Adiabatic potential energy curves of the 31Σ+, 33Σ+, 21Π and 23Π states correlating for large internuclear distance with the K(4s) + Li(2p) atomic asymptote were calculated. Very good agreement between the calculated and the experimental curve of the 21Π state allowed for a reliable description of the dissociation process through a small (∼20 cm-1 for J = 0) potential energy barrier. The barrier supports several rovibrational quasi-bound states and explicit time evolution of these states via the time-dependent nuclear Schrödinger equation, showed that the state populations decay exponentially in time. We were able to precisely describe the time-dependent dissociation process of several rovibrational levels and found that our calculated spectrum match very well with the assigned experimental spectrum. Moreover, our approach is able to predict the positions of previously unassigned lines, particularly in the case of their low intensity.

2.
J Chem Theory Comput ; 13(12): 6010-6022, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29083921

ABSTRACT

A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H2O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt2(P2O5H2)4]4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

3.
Phys Chem Chem Phys ; 19(30): 19777-19783, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28636002

ABSTRACT

The adiabatic potential energy curves of the 1Σ+ and 1Π states of the LiH molecule were calculated. They correlate asymptotically to atomic states, such as 2s + 1s, 2p + 1s, 3s + 1s, 3p + 1s, 3d + 1s, 4s + 1s, 4p + 1s and 4d + 1s. A very good agreement was found between our calculated spectroscopic parameters and the experimental ones. The dynamics of the rotational predissociation process of the 11Π state were studied by solving the time-dependent Schrödinger equation. The classical experiment of Velasco [Can. J. Phys., 1957, 35, 1204] on dissociation in the 11Π state is explained for the first time in detail.

4.
J Chem Phys ; 120(13): 5871-4, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15267468

ABSTRACT

We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational dynamics causes a situation which is comparable to the interaction of the molecule with a train of pulses where the pulse separation is determined by the vibrational period.

5.
Phys Rev Lett ; 87(19): 193001, 2001 Nov 05.
Article in English | MEDLINE | ID: mdl-11690407

ABSTRACT

We consider impulsive excitation of a linear polar molecule by a plane polarized electromagnetic "half-cycle" pulse in the terahertz range. A rotational wave packet is created with angular momentum states of different parity. The time evolution of the wave packet corresponds to alternating molecular orientations with respect to the polarization axis of the field. This field-free time-dependent orientation of the molecule is computationally demonstrated, also at finite temperatures, with LiH and NaI as examples.

SELECTION OF CITATIONS
SEARCH DETAIL
...