Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(24)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35420060

ABSTRACT

In this paper we consider a honeycomb antiferromagnet subject to an external laser field. Obtaining a time-independent effective Hamiltonian, we find that the external laser renormalizes the exchange interaction between the in-plane components of the spin-operators, and induces a synthetic Dzyaloshinskii-Moria interaction (DMI) between second neighbors. The former allows the control of the magnon dispersion's bandwidth and the latter breaks time-reversal symmetry inducing non-reciprocity in momentum space. The eigen-excitations of the system correspond to squeezed magnons whose squeezing parameters depend on the properties of the laser. When studying how these spin excitations couple with cavity photons, we obtain a coupling strength which can be enhanced by an order of magnitude via careful tuning of the laser's intensity, when compared to the case where the laser is absent. The transmission plots through the cavity are presented, allowing the mapping of the magnons' dispersion relation.

2.
J Phys Condens Matter ; 32(2): 025304, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31553957

ABSTRACT

In this paper we theoretically describe the absorption of hexagonal boron nitride (hBN) single layer. We develop the necessary formalism and present an efficient method for solving the Wannier equation for excitons. We give predictions for the absorption of hBN on quartz and on graphite. We compare our predictions with recently published results (Elias et al 2019 Nat. Commun. 10 2639) for a monolayer of hBN on graphite. The spontaneous radiative lifetime of excitons in hBN is also computed. We argue that the optical properties of hBN in the ultraviolet are very useful for the study of peptides and other biomolecules.

3.
Dentomaxillofac Radiol ; 44(9): 20150108, 2015.
Article in English | MEDLINE | ID: mdl-26090934

ABSTRACT

OBJECTIVES: To investigate the effect of tube current-exposure time (mAs) reduction on clinical and technical image quality for different CBCT scanners, and to determine preliminary minimally acceptable values for the mAs and contrast-to-noise ratio (CNR) in CBCT. METHODS: A polymethyl methacrylate (PMMA) phantom and an anthropomorphic skull phantom, containing a human skeleton embedded in polyurethane, were scanned using four CBCT devices, including seven exposure protocols. For all protocols, the mAs was varied within the selectable range. Using the PMMA phantom, the CNRAIR was measured and corrected for voxel size. Eight axial slices and one coronal slice showing various anatomical landmarks were selected for each CBCT scan of the skull phantom. The slices were presented to six dentomaxillofacial radiologists, providing scores for various anatomical and diagnostic parameters. RESULTS: A hyperbolic relationship was seen between CNRAIR and mAs. Similarly, a gradual reduction in clinical image quality was seen at lower mAs values; however, for several protocols, image quality remained acceptable for a moderate or large mAs reduction compared with the standard exposure setting, depending on the clinical application. The relationship between mAs, CNRAIR and observer scores was different for each CBCT device. Minimally acceptable values for mAs were between 9 and 70, depending on the criterion and clinical application. CONCLUSIONS: Although noise increased at a lower mAs, clinical image quality often remained acceptable at exposure levels below the manufacturer's recommended setting, for certain patient groups. Currently, it is not possible to determine minimally acceptable values for image quality that are applicable to multiple CBCT models.


Subject(s)
Cone-Beam Computed Tomography/methods , Radiographic Image Enhancement/methods , Radiography, Dental, Digital/methods , Adult , Anatomic Landmarks/diagnostic imaging , Artifacts , Cone-Beam Computed Tomography/instrumentation , Humans , Male , Mandible/diagnostic imaging , Maxilla/diagnostic imaging , Phantoms, Imaging , Polymethyl Methacrylate/chemistry , Radiation Dosage , Radiography, Dental, Digital/instrumentation , Skull/diagnostic imaging , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...