Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Org Chem ; 88(16): 11683-11693, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37535477

ABSTRACT

Ylidenenorbornadienes (YNDs), prepared by [4 + 2] cycloadditions between fulvenes and acetylene carboxylates, react with thiol nucleophiles to yield mixtures of four to eight diastereomers depending on the symmetry of the YND substrate. The mixtures of diastereomers fragment via a retro-[4 + 2] cycloaddition with a large variation in rate, with half-lives ranging from 16 to 11,000 min at 80 °C. The diastereomer-enriched samples of propane thiol adducts [YND-propanethiol (PTs)] were isolated and identified by nuclear Overhauser effect spectroscopy (NOESY) correlations. Simulated kinetics were used to extrapolate the rate constants of individual diastereomers from the observed rate data, and it correlated well with rate constants measured directly and from isolated diastereomer-enriched samples. The individual diastereomers of a model system fragment at differing rates with half-lives ranging from 5 to 44 min in CDCl3. Density functional theory calculations were performed to investigate the mechanism of fragmentation and support an asynchronous retro-[4 + 2] cycloaddition transition state. The computations generally correlated well with the observed free energies of activation for four diastereomers of the model system as a whole, within 2.6 kcal/mol. However, the observed order of the fragmentation rates across the set of diastereomers deviated from the computational results. YNDs display wide variability in the rate of fragmentation, dependent on the stereoelectronics of the ylidene substituents. A Hammett study showed that the electron-rich aromatic rings attached to the ylidene bridge increase the fragmentation rate, while electron-deficient systems slow fragmentation rates.

2.
Org Lett ; 24(15): 2793-2797, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35404620

ABSTRACT

Ylidenenorbornadienes (YNDs), prepared by [4 + 2] cycloadditions between fulvenes and acetylene carboxylates, react with beta-mercaptoethanol to yield a mixture of four diastereomers. These four diastereomers fragment via a retro-[4 + 2] cycloaddition at differing rates. A simulated kinetics approach extrapolated the rate constants of the diastereomers from the observed rate data. YNDs display wide variability in rate of fragmentation, dependent on the stereoelectronics of the ylidene substituents. A substrate containing one carboxylic ester proved exceptionally stable to fragmentation.

3.
Photochem Photobiol Sci ; 21(3): 303-318, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35195891

ABSTRACT

The absorption spectra of a series of dithiocarboxylates were investigated in the ultraviolet-visible region. Two questions that this study aimed to address were as follows: (1) What transitions give rise to the features in the electronic spectra? And (2) what are the long- and short-range substituent effects on the absorption spectra? A series of 11 dithiocarboxylates were prepared as organic soluble salts. Time-dependent density functional theory (TDDFT) was used to calculate excited state energies and oscillator strengths of electronic transitions. TDDFT at the CAM-B3LYP/def2-TZVPD level of theory predicts two low-energy n → π* transitions and two π → π* transitions at higher energy, consistent with the experimental spectra. This state ordering and density is in contrast to the better studied thiocarbonyls for which only two transitions within the singlet manifold appear in the UV-visible region. For derivatives of dithiobenzoate, the energy of the three lowest energy states are insensitive to changes to substituents para to the dithiocarboxylate group. In contrast, the energy of the highest ππ* state varies by 0.78 eV. This work shows that the results of TDDFT calculations can be used to predict the electronic absorption spectra of dithiocarboxylates, providing a useful tool for designing dithiocarboxylate light absorbers.


Subject(s)
Electronics
SELECTION OF CITATIONS
SEARCH DETAIL
...