Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomed Opt ; 20(12): 125006, 2015.
Article in English | MEDLINE | ID: mdl-26720871

ABSTRACT

Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV̇O2). We calibrated rBF and rV̇O2 profiles with absolute baseline values of BF and V̇O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.


Subject(s)
Exercise , Isometric Contraction , Muscle, Skeletal/physiology , Optics and Photonics/methods , Adult , Algorithms , Blood Flow Velocity , Calibration , Female , Healthy Volunteers , Hemodynamics , Hemoglobins/chemistry , Humans , Lower Extremity/physiology , Male , Oxygen/chemistry , Oxygen Consumption
3.
J Biomed Opt ; 18(10): 105002, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24096298

ABSTRACT

Technologies currently available for the monitoring of electrical stimulation (ES) in promoting blood circulation and tissue oxygenation are limited. This study integrated a muscle stimulator with a diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively quantify muscle blood flow and oxygenation responses during ES. Ten healthy subjects were tested using the integrated system. The muscle stimulator delivered biphasic electrical current to right leg quadriceps muscle, and a custom-made DCS flow-oximeter was used for simultaneous measurements of muscle blood flow and oxygenation in both legs. To minimize motion artifact of muscle fibers during ES, a novel gating algorithm was developed for data acquisition at the time when the muscle was relaxed. ES at 2, 10, and 50 Hz were applied for 20 min on each subject in three days sequentially. Results demonstrate that the 20-min ES at all frequencies promoted muscle blood flow significantly. However, only the ES at 10 Hz resulted in significant and persistent increases in oxy-hemoglobin concentration during and post ES. This pilot study supports the application of the integrated system to quantify tissue hemodynamic improvements for the optimization of ES treatment in patients suffering from diseases caused by poor blood circulation and low tissue oxygenation (e.g., pressure ulcer).


Subject(s)
Electric Stimulation/methods , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Signal Processing, Computer-Assisted , Spectrum Analysis/methods , Adult , Algorithms , Artifacts , Blood Pressure/physiology , Female , Heart Rate/physiology , Hemodynamics/physiology , Humans , Linear Models , Male , Oximetry
SELECTION OF CITATIONS
SEARCH DETAIL