Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772046

ABSTRACT

BACKGROUND: Yttrium-90 (90Y) positron emission tomography (PET)/computed tomography (CT) imaging is increasingly being used to perform tumor (T) and normal liver (NL) voxel dosimetry after 90Y-radioembolization (90Y-RE). Yet, the accuracy of in vivo 90Y-PET/CT imaging, subject to motion blur and co-registration inaccuracies, and 90Y-PET/CT dose quantification, subject to availability of different voxel dosimetry algorithms, are not well understood. PURPOSE: The purpose of this study was to investigate the accuracy of 90Y-PET/CT-based activity estimates following 90Y-RE and characterize differences between 90Y-PET/CT-based voxel dosimetry algorithms. METHODS: Thirty-five patients underwent 90Y-PET/CT imaging after 90Y-RE with TheraSphere. The net administered 90Y activity (Aadmin) was determined using a dose calibrator and pre- and post-procedure exposure rate measurements. The summation of image-based activity (Aimage) was extracted from perfused volume (PV) and 3D-isotropically 2-cm expanded PV contour (PV+2 cm). Absorbed doses were calculated using voxel S-value (VSV), local deposition method (LDM), and LDM with known activity (LDMKA) dosimetry algorithms. Linear regression and Bland-Altman analysis quantified the relationship between Aimage and Aadmin and between mean dose estimates (DLDM, DVSV, DLDM-KA) for PV, T, and perfused NL volumes. RESULTS: While Aadmin and Aimage in PV were highly correlated (R2 > 0.95), the mean bias ± standard error (SE) and (95% limits of agreement, LOA) was significantly non-zero with -22.7 ± 4.7% (± 28.4%). In PV+2 cm, the mean bias ± SE (± LOA) decreased to 1.3 ± 3.4% (± 18.0%) consistent with zero mean error. DLDM and DVSV were highly correlated (R2 > 0.99) for all volumes of interest (VOIs) and the mean bias ± SE (± LOA) was 2.2 ± 0.2% (± 1.0%), 0.7 ± 0.4% (± 2.8%), and 3.2 ± 0.5% (± 2.8%) for PV, T, and NL, respectively. DLDM-KA and DVSV were correlated with R2 = 0.86, 0.80, and 0.86 for PV, T, and NL, respectively. The mean bias ± SE (± LOA) between DLDM-KA and DVSV was significantly non-zero with -19.6 ± 5.1% (± 31.0%), -20.8 ± 4.4% (± 29.0%), and -18.1 ± 5.3% (± 31.1%) for PV, T, and NL, respectively. CONCLUSIONS: The summation of Aimage in PV was underestimated relative to Aadmin. Only by accounting for respiratory motion, limited spatial resolution, and PET/CT co-registration errors through VOI expansion was Aimage, on average, equal to Aadmin. The differences between DLDM and DVSV were not clinically relevant, though DLDM-KA was approximately 20% greater than DVSV. Given the high quantitative accuracy of dose calibrators and challenges associated with accurate 90Y-PET/CT quantification, LDMKA is the preferred algorithm for accurate 90Y-PET/CT-based dosimetry following 90Y-RE.

2.
Med Phys ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781554

ABSTRACT

BACKGROUND: Following yttrium-90 radioembolization (90Y-RE), 90Y-PET/CT and 90Y-SPECT/CT imaging provide the means to calculate the voxelized absorbed dose distribution. Given the widespread use of the two imaging modalities and lack of well-established standardized dosimetry protocols for 90Y-RE, there is a clinical need to systematically investigate and evaluate differences in the performance of voxel-based dosimetry between 90Y-PET/CT and 90Y-SPECT/CT. PURPOSE: To quantitatively analyze and compare 90Y-PET/CT and 90Y-SPECT/CT-based dosimetry following 90Y-RE. METHODS: 90Y-PET/CT and 90Y-SPECT/CT imaging was acquired for 35 patients following 90Y-RE with TheraSphere for the treatment of unresectable hepatocellular carcinoma. Dosimetry was performed using the local deposition method with known activity and the mean dose (Dmean) was calculated for perfused liver volumes (PV), tumors (T), and perfused normal livers (NL). Additionally, the absorbed dose to x% of the volume (Dx, x ∈ $ \in $ [5%, 10%, …, 90%, 95%]) and the volume receiving y Gy (Vy, y ∈ $ \in $ [10 Gy, 20 Gy, …, 190 Gy, 200 Gy]) were calculated for T and NL, respectively. Dose metrics were compared using linear regression, Bland-Altman analysis, and statistical testing. RESULTS: Both 90Y-SPECT/CT and 90Y-PET/CT-based tumor Dmean were strongly correlated (R2 ≥ 0.90) with Dx, excluding metrics on the extrema. Intra-modality comparisons of various Dx and Vy metrics yielded statistically significant differences (ANOVA, p < 0.001) for both90Y-PET/CT and 90Y-SPECT/CT. Based on statistical testing, only Dx metrics separated by greater than 20%-30% coverage, and only Vy metrics separated by greater than 40-70 Gy, reported significant differences. For PV, there was a strong correlation (R2 ≥ 0.99) between Dmean derived separately from 90Y-PET/CT and 90Y-SPECT/CT imaging. The strength of the correlation was slightly reduced for T and NL with R2 = 0.91 and R2 = 0.95, respectively. For PV, the mean bias ± standard error (SE) and 95% limits of agreement (LOA) between Dmean from the two modalities was effectively zero with -0.8 ± 0.4% (± 2.5%). For T and NL, the mean bias ± SE (± LOA) was -14.5 ± 3.7% (± 24%) and 9.4 ± 4.7% (± 27%), respectively. CONCLUSION: The strong correlation between Dmean and Dx suggests information from multiple dose metrics (e.g., D70 and Dmean) is largely redundant when establishing dose-response relationships in 90Y-RE. Dmean is highly correlated between 90Y-PET/CT and 90Y-SPECT/CT-based dosimetry, for all liver VOIs. Relative to 90Y-SPECT/CT, 90Y-PET/CT, on average, yielded higher Dmean to tumors (14%) and lower Dmean to perfused normal livers (9%). Absorbed dose differences for perfused liver volumes between 90Y-SPECT/CT and 90Y-PET/CT were negligible.

SELECTION OF CITATIONS
SEARCH DETAIL
...