Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38136895

ABSTRACT

Increasing the efficiency of rumen fermentation is one of the main ways to maximize the production of ruminants. It is therefore important to understand the ruminal microbiome, as well as environmental influences on that community. However, there are no studies that describe the ruminal microbiota in buffaloes in the Amazon. The objective of this study was to characterize the rumen microbiome of the water buffalo (Bubalus bubalis) in the eastern Amazon in the dry and rainy seasons in three grazing ecosystems: Baixo Amazonas (BA), Continente do Pará (CP), Ilha do Marajó (IM), and in a confinement system: Tomé-Açu (TA). Seventy-one crossbred male buffaloes (Murrah × Mediterranean) were used, aged between 24 and 36 months, with an average weight of 432 kg in the rainy season and 409 kg in the dry season, and fed on native or cultivated pastures. In the confinement system, the feed consisted of sorghum silage, soybean meal, wet sorghum premix, and commercial feed. Samples of the diet from each ecosystem were collected for bromatological analysis. The collections of ruminal content were carried out in slaughterhouses, with the rumen completely emptied and homogenized, the solid and liquid fractions separated, and the ruminal pH measured. DNA was extracted from the rumen samples, then sequenced using Restriction Enzyme Reduced Representation Sequencing. The taxonomic composition was largely similar between ecosystems. All 61 genera in the reference database were recognized, including members of the domains Bacteria and Archaea. The abundance of 23 bacterial genera differed significantly (p < 0.01) between the Tomé-Açu confinement and other ecosystems. Bacillus, Ruminococcus, and Bacteroides had lower abundance in samples from the Tomé-Açu system. Among the Archaea, the genus Methanomicrobium was less abundant in Tomé-Açu, while Methanosarcina was more abundant. There was a difference caused by all evaluated factors, but the diet (available or offered) was what most influenced the ruminal microbiota.

2.
Genet Sel Evol ; 55(1): 53, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491204

ABSTRACT

BACKGROUND: Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA sequencing to predict performance traits or traits related to environmental impact, such as enteric methane emissions. Metagenome profiles were generated from 3139 rumen samples, collected from 1200 dual purpose ewes, using restriction enzyme-reduced representation sequencing (RE-RRS). Phenotypes were available for methane (CH4) and carbon dioxide (CO2) emissions, the ratio of CH4 to CH4 plus CO2 (CH4Ratio), feed efficiency (residual feed intake: RFI), liveweight at the time of methane collection (LW), liveweight at 8 months (LW8), fleece weight at 12 months (FW12) and parasite resistance measured by faecal egg count (FEC1). We estimated the proportion of phenotypic variance explained by host genetics and the rumen microbiome, as well as prediction accuracies for each of these traits. RESULTS: Incorporating metagenome profiles increased the variance explained and prediction accuracy compared to fitting only genomics for all traits except for CO2 emissions when animals were on a grass diet. Combining the metagenome profile with host genotype from lambs explained more than 70% of the variation in methane emissions and residual feed intake. Predictions were generally more accurate when incorporating metagenome profiles compared to genetics alone, even when considering profiles collected at different ages (lamb vs adult), or on different feeds (grass vs lucerne pellet). A reference-free approach to metagenome profiling performed better than metagenome profiles that were restricted to capturing genera from a reference database. We hypothesise that our reference-free approach is likely to outperform other reference-based approaches such as 16S rRNA gene sequencing for use in prediction of individual animal performance. CONCLUSIONS: This paper shows the potential of using RE-RRS as a low-cost, high-throughput approach for generating metagenome profiles on thousands of animals for improved prediction of economically and environmentally important traits. A reference-free approach using a microbial relationship matrix from log10 proportions of each tag normalized within cohort (i.e., the group of animals sampled at the same time) is recommended for future predictions using RE-RRS metagenome profiles.


Subject(s)
Metagenome , Methane , Sheep/genetics , Animals , Female , Rumen , Carbon Dioxide , RNA, Ribosomal, 16S/genetics , Phenotype , Diet/veterinary , Animal Feed
3.
PLoS One ; 15(4): e0219882, 2020.
Article in English | MEDLINE | ID: mdl-32243481

ABSTRACT

Microbial community profiles have been associated with a variety of traits, including methane emissions in livestock. These profiles can be difficult and expensive to obtain for thousands of samples (e.g. for accurate association of microbial profiles with traits), therefore the objective of this work was to develop a low-cost, high-throughput approach to capture the diversity of the rumen microbiome. Restriction enzyme reduced representation sequencing (RE-RRS) using ApeKI or PstI, and two bioinformatic pipelines (reference-based and reference-free) were compared to bacterial 16S rRNA gene sequencing using repeated samples collected two weeks apart from 118 sheep that were phenotypically extreme (60 high and 58 low) for methane emitted per kg dry matter intake (n = 236). DNA was extracted from freeze-dried rumen samples using a phenol chloroform and bead-beating protocol prior to RE-RRS. The resulting sequences were used to investigate the repeatability of the rumen microbial community profiles, the effect of laboratory and analytical method, and the relationship with methane production. The results suggested that the best method was PstI RE-RRS analyzed with the reference-free approach, which accounted for 53.3±5.9% of reads, and had repeatabilities of 0.49±0.07 and 0.50±0.07 for the first two principal components (PC1 and PC2), phenotypic correlations with methane yield of 0.43±0.06 and 0.46±0.06 for PC1 and PC2, and explained 41±8% of the variation in methane yield. These results were significantly better than for bacterial 16S rRNA gene sequencing of the same samples (p<0.05) except for the correlation between PC2 and methane yield. A Sensitivity study suggested approximately 2000 samples could be sequenced in a single lane on an Illumina HiSeq 2500, meaning the current work using 118 samples/lane and future proposed 384 samples/lane are well within that threshold. With minor adaptations, our approach could be used to obtain microbial profiles from other metagenomic samples.


Subject(s)
Gastrointestinal Microbiome , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Rumen/microbiology , Sheep/microbiology , Animals , Bacteria/genetics , Female , High-Throughput Nucleotide Sequencing/economics , Male , Metagenome , Metagenomics/economics , Microbiota , RNA, Ribosomal, 16S/genetics
4.
PLoS One ; 9(4): e93392, 2014.
Article in English | MEDLINE | ID: mdl-24740141

ABSTRACT

Accurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs) are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies. The objective of this study was to develop a high throughput SNP assay for use in the New Zealand sheep industry that gives accurate pedigree assignment and will allow a reduction in breeder input over lambing. This required two phases of development--firstly, a method of extracting quality DNA from ear-punch tissue performed in a high throughput cost efficient manner and secondly a SNP assay that has the ability to assign paternity to progeny resulting from mob mating. A likelihood based approach to infer paternity was used where sires with the highest LOD score (log of the ratio of the likelihood given parentage to likelihood given non-parentage) are assigned. An 84 "parentage SNP panel" was developed that assigned, on average, 99% of progeny to a sire in a problem where there were 3,000 progeny from 120 mob mated sires that included numerous half sib sires. In only 6% of those cases was there another sire with at least a 0.02 probability of paternity. Furthermore dam information (either recorded, or by genotyping possible dams) was absent, highlighting the SNP test's suitability for paternity testing. Utilization of this parentage SNP assay will allow implementation of progeny testing into large commercial farms where the improved accuracy of sire assignment and genetic evaluations will increase genetic gain in the sheep industry.


Subject(s)
Multiplex Polymerase Chain Reaction/methods , Pedigree , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , New Zealand
SELECTION OF CITATIONS
SEARCH DETAIL
...