Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 595(7866): 233-238, 2021 07.
Article in English | MEDLINE | ID: mdl-34234335

ABSTRACT

Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems in regimes where other approaches, including numerical ones, fail1. Many platforms are being developed towards this goal, in particular based on trapped ions2-4, superconducting circuits5-7, neutral atoms8-11 or molecules12,13. All of these platforms face two key challenges: scaling up the ensemble size while retaining high-quality control over the parameters, and validating the outputs for these large systems. Here we use programmable arrays of individual atoms trapped in optical tweezers, with interactions controlled by laser excitation to Rydberg states11, to implement an iconic many-body problem-the antiferromagnetic two-dimensional transverse-field Ising model. We push this platform to a regime with up to 196 atoms manipulated with high fidelity and probe the antiferromagnetic order by dynamically tuning the parameters of the Hamiltonian. We illustrate the versatility of our platform by exploring various system sizes on two qualitatively different geometries-square and triangular arrays. We obtain good agreement with numerical calculations up to a computationally feasible size (approximately 100 particles). This work demonstrates that our platform can be readily used to address open questions in many-body physics.

2.
Phys Rev Lett ; 117(21): 210401, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27911517

ABSTRACT

The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.

3.
Phys Rev Lett ; 113(2): 027204, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062226

ABSTRACT

We show that quantum square ice-namely, the two-dimensional version of proton or spin ice with tunable quantum tunneling of the electric or magnetic dipole moment-exhibits a quantum spin-liquid phase supporting fractionalized spinons. This phase corresponds to a thermally induced, deconfined quantum Coulomb phase of a two-dimensional lattice gauge theory. It emerges at finite, yet exceedingly low temperatures from the melting of two distinct order-by-disorder phases appearing in the ground state: a plaquette valence-bond solid for low tunneling; and a canted Néel state for stronger tunneling. The latter phases appear via the highly nonlinear effect of quantum fluctuations within the degenerate manifold of ice-rule states, and they can be identified as the two competing ground states of a discrete lattice gauge theory (quantum link model) emerging as the effective Hamiltonian of the system within degenerate perturbation theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...