Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Solid State Nucl Magn Reson ; 45-46: 45-50, 2012.
Article in English | MEDLINE | ID: mdl-22727848

ABSTRACT

NMR spin-lattice relaxation efficiency is similar at all carbon and silicon sites in aluminum-doped 4H- and 6H-polytype silicon carbide samples, indicating that the valence band edge (the top of the valence band), where the holes are located in p-doped materials, has similar charge densities at all atomic sites. This is in marked contrast to nitrogen-doped samples of the same polytypes where huge site-specific differences in relaxation efficiency indicate that the conduction band edge (the bottom of the conduction band), where the mobile electrons are located in n-doped materials, has very different charge densities at the different sites. An attempt was made to observe (27)Al NMR signals directly, but they are too broad, due to paramagnetic line broadening, to provide useful information about aluminum doping.


Subject(s)
Aluminum/chemistry , Carbon Compounds, Inorganic/chemistry , Magnetic Resonance Spectroscopy/methods , Semiconductors , Silicon Compounds/chemistry
2.
Opt Express ; 20(7): 7575-9, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453436

ABSTRACT

In the present work, antireflective sub-wavelength structures have been fabricated on fluorescent 6H-SiC to enhance the white light extraction efficiency by using the reactive-ion etching method. Broadband and omnidirectional antireflection characteristics show that 6H-SiC with antireflective sub-wavelength structures suppress the average surface reflection significantly from 20.5 % to 1.01 % over a wide spectral range of 390-784 nm. The luminescence intensity of the fluorescent 6H-SiC could be enhanced in the whole emission angle range. It maintains an enhancement larger than 91 % up to the incident angle of 70 degrees, while the largest enhancement of 115.4 % could be obtained at 16 degrees. The antireflective sub-wavelength structures on fluorescent 6H-SiC could also preserve the luminescence spectral profile at a large emission angle by eliminating the Fabry-Pérot microcavity interference effect.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Luminescent Measurements/methods , Silicon Compounds/chemistry , Spectrometry, Fluorescence/methods , Materials Testing , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...