Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 61(8): 3752-3757, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34383501

ABSTRACT

We present several new major features added to the Monte Carlo (MC) simulation code Brick-CFCMC for phase- and reaction equilibria calculations (https://gitlab.com/ETh_TU_Delft/Brick-CFCMC). The first one is thermodynamic integration for the computation of excess chemical potentials (µex). For this purpose, we implemented the computation of the ensemble average of the derivative of the potential energy with respect to the scaling factor for intermolecular interactions (⟨∂U∂λ⟩). Efficient bookkeeping is implemented so that the quantity ∂U∂λ is updated after every MC trial move with negligible computational cost. We demonstrate the accuracy and reliability of the calculation of µex for sodium chloride in water. Second, we implemented hybrid MC/MD translation and rotation trial moves to increase the efficiency of sampling of the configuration space. In these trial moves, short Molecular Dynamics (MD) trajectories are performed to collectively displace or rotate all molecules in the system. These trajectories are accepted or rejected based on the total energy drift. The efficiency of these trial moves can be tuned by changing the time step and the trajectory length. The new trial moves are demonstrated using MC simulations of a viscous fluid (deep eutectic solvent).


Subject(s)
Molecular Dynamics Simulation , Software , Monte Carlo Method , Reproducibility of Results , Thermodynamics
2.
J Chem Inf Model ; 60(6): 2678-2682, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32275829

ABSTRACT

We present a new molecular simulation code, Brick-CFCMC, for performing Monte Carlo simulations using state-of-the-art simulation techniques. The Continuous Fractional Component (CFC) method is implemented for simulations in the NVT/NPT ensembles, the Gibbs Ensemble, the Grand-Canonical Ensemble, and the Reaction Ensemble. Molecule transfers are facilitated by the use of fractional molecules which significantly improve the efficiency of the simulations. With the CFC method, one can obtain phase equilibria and properties such as chemical potentials and partial molar enthalpies/volumes directly from a single simulation. It is possible to combine trial moves from different ensembles. This enables simulations of phase equilibria in a system where also a chemical reaction takes place. We demonstrate the applicability of our software by investigating the esterification of methanol with acetic acid in a two-phase system.


Subject(s)
Methanol , Software , Computer Simulation , Monte Carlo Method , Thermodynamics
3.
J Chem Theory Comput ; 16(3): 1757-1767, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31999461

ABSTRACT

We introduce an alternative method to perform free energy calculations for mixtures at multiple temperatures and pressures from a single simulation, by combining umbrella sampling and the continuous fractional component Monte Carlo method. One can perform a simulation of a mixture at a certain pressure and temperature and accurately compute the chemical potential at other pressures and temperatures close to the simulation conditions. This method has the following advantages: (1) Accurate estimates of the chemical potential as a function of pressure and temperature are obtained from a single state simulation without additional postprocessing. This can potentially reduce the number of simulations of a system for free energy calculations for a specific temperature and/or pressure range. (2) Partial molar volumes and enthalpies are obtained directly from the estimated chemical potentials. We tested our method for a Lennard-Jones system, aqueous mixtures of methanol at T = 298 K and P = 1 bar, and a mixture of ammonia, nitrogen, and hydrogen at T = 573 K and P = 800 bar. For pure methanol (N = 410 molecules), we observed that the estimated chemical potentials from umbrella sampling are in excellent agreement with the reference values obtained from independent simulations, for ΔT = ±15 K and ΔP = 100 bar (with respect to the simulated system). For larger systems, this range becomes smaller because the relative fluctuations of energy and volume become smaller. Without sufficient overlap, the performance of the method will become poor especially for nonlinear variations of the chemical potential.

4.
J Chem Eng Data ; 63(4): 1096-1102, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-30258248

ABSTRACT

The applicability of the Wolf method for calculating electrostatic interactions is verified for simulating vapor-liquid equilibria of hydrogen sulfide, methanol, and carbon dioxide. Densities, chemical potentials, and critical properties are obtained with Monte Carlo simulations using the Continuous Fractional Component version of the Gibbs Ensemble. Saturated vapor pressures are obtained from NPT simulations. Excellent agreement is found between simulation results and data from literature (simulations using the Ewald summation). It is also shown how to choose the optimal parameters for the Wolf method. Even though the Wolf method requires a large simulation box in the gas phase, due to the lack of screening of electrostatics, one can consider the Wolf method as a suitable alternative to the Ewald summation in VLE calculations.

5.
J Chem Theory Comput ; 13(9): 4452-4466, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28737933

ABSTRACT

A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3) Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn (Journal of Chemical Theory and Computation, 2011, 7, 269-279), and the conventional RxMC approach. The serial Rx/CFC approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using the Peng-Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the system) compared to the RxMC/CFCMC formulation by Rosch and Maginn.

SELECTION OF CITATIONS
SEARCH DETAIL
...