Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Autism Res ; 12(12): 1745-1757, 2019 12.
Article in English | MEDLINE | ID: mdl-31507084

ABSTRACT

Children with autism spectrum disorders (ASDs) often exhibit altered representations of the external world. Consistently, when localizing touch, children with ASDs were less influenced than their peers by changes of the stimulated limb's location in external space [Wada et al., Scientific Reports 2015, 4(1), 5985]. However, given the protracted development of an external-spatial dominance in tactile processing in typically developing children, this difference might reflect a developmental delay rather than a set suppression of external space in ASDs. Here, adults with ASDs and matched control-participants completed (a) the tactile temporal order judgment (TOJ) task previously used to test external-spatial representation of touch in children with ASDs and (b) a tactile-visual cross-modal congruency (CC) task which assesses benefits of task-irrelevant visual stimuli on tactile localization in external space. In both experiments, participants localized tactile stimuli to the fingers of each hand, while holding their hands either crossed or uncrossed. Performance differences between hand postures reflect the influence of external-spatial codes. In both groups, tactile TOJ-performance markedly decreased when participants crossed their hands and CC-effects were especially large if the visual stimulus was presented at the same side of external space as the task-relevant touch. The absence of group differences was statistically confirmed using Bayesian statistical modeling: adults with ASDs weighted external-spatial codes comparable to typically developed adults during tactile and visual-tactile spatio-temporal tasks. Thus, atypicalities in the spatial coding of touch for children with ASDs appear to reflect a developmental delay rather than a stable characteristic of ASD. Autism Res 2019, 12: 1745-1757. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: A touched limb's location can be described twofold, with respect to the body (right hand) or the external world (right side). Children and adolescents with autism spectrum disorder (ASD) reportedly rely less than their peers on the external world. Here, adults with and without ASDs completed two tactile localization tasks. Both groups relied to the same degree on external world locations. This opens the possibility that the tendency to relate touch to the external world is typical in individuals with ASDs but emerges with a delay.


Subject(s)
Autism Spectrum Disorder/physiopathology , Photic Stimulation/methods , Proprioception/physiology , Spatial Processing/physiology , Touch Perception/physiology , Adult , Bayes Theorem , Female , Humans , Judgment/physiology , Male
2.
Atten Percept Psychophys ; 81(5): 1715-1724, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30815794

ABSTRACT

There is an ongoing debate whether or not multisensory interactions require awareness of the sensory signals. Static visual and tactile stimuli have been shown to influence each other even in the absence of visual awareness. However, it is unclear if this finding generalizes to dynamic contexts. In the present study, we presented visual and tactile motion stimuli and induced fluctuations of visual awareness by means of binocular rivalry: two gratings which drifted in opposite directions were displayed, one to each eye. One visual motion stimulus dominated and reached awareness while the other visual stimulus was suppressed from awareness. Tactile motion stimuli were presented at random time points during the visual stimulation. The motion direction of a tactile stimulus always matched the direction of one of the concurrently presented visual stimuli. The visual gratings were differently tinted, and participants reported the color of the currently seen stimulus. Tactile motion delayed perceptual switches that ended dominance periods of congruently moving visual stimuli compared to switches during visual-only stimulation. In addition, tactile motion fostered the return to dominance of suppressed, congruently moving visual stimuli, but only if the tactile motion started at a late stage of the ongoing visual suppression period. At later stages, perceptual suppression is typically decreasing. These results suggest that visual awareness facilitates but does not gate multisensory interactions between visual and tactile motion signals.


Subject(s)
Motion Perception/physiology , Touch Perception/physiology , Vision, Binocular/physiology , Visual Perception/physiology , Awareness/physiology , Bias , Female , Humans , Male , Photic Stimulation/methods , Young Adult
3.
Neuroimage ; 167: 284-296, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29175496

ABSTRACT

The present study tested whether or not functional adaptations following congenital blindness are maintained in humans after sight-restoration and whether they interfere with visual recovery. In permanently congenital blind individuals both intramodal plasticity (e.g. changes in auditory cortex) as well as crossmodal plasticity (e.g. an activation of visual cortex by auditory stimuli) have been observed. Both phenomena were hypothesized to contribute to improved auditory functions. For example, it has been shown that early permanently blind individuals outperform sighted controls in auditory motion processing and that auditory motion stimuli elicit activity in typical visual motion areas. Yet it is unknown what happens to these behavioral adaptations and cortical reorganizations when sight is restored, that is, whether compensatory auditory changes are lost and to which degree visual motion processing is reinstalled. Here we employed a combined behavioral-electrophysiological approach in a group of sight-recovery individuals with a history of a transient phase of congenital blindness lasting for several months to several years. They, as well as two control groups, one with visual impairments, one normally sighted, were tested in a visual and an auditory motion discrimination experiment. Task difficulty was manipulated by varying the visual motion coherence and the signal to noise ratio, respectively. The congenital cataract-reversal individuals showed lower performance in the visual global motion task than both control groups. At the same time, they outperformed both control groups in auditory motion processing suggesting that at least some compensatory behavioral adaptation as a consequence of a complete blindness from birth was maintained. Alpha oscillatory activity during the visual task was significantly lower in congenital cataract reversal individuals and they did not show ERPs modulated by visual motion coherence as observed in both control groups. In contrast, beta oscillatory activity in the auditory task, which varied as a function of SNR in all groups, was overall enhanced in congenital cataract reversal individuals. These results suggest that intramodal plasticity elicited by a transient phase of blindness was maintained and might mediate the prevailing auditory processing advantages in congenital cataract reversal individuals. By contrast, auditory and visual motion processing do not seem to compete for the same neural resources. We speculate that incomplete visual recovery is due to impaired neural network turning which seems to depend on early visual input. The present results demonstrate a privilege of the first arriving input for shaping neural circuits mediating both auditory and visual functions.


Subject(s)
Auditory Perception/physiology , Beta Rhythm/physiology , Cataract/physiopathology , Cerebral Cortex/physiopathology , Evoked Potentials/physiology , Motion Perception/physiology , Vision Disorders/physiopathology , Adolescent , Adult , Alpha Rhythm/physiology , Blindness/congenital , Blindness/physiopathology , Blindness/surgery , Cataract/congenital , Cataract Extraction , Child , Female , Humans , Male , Vision Disorders/congenital , Vision Disorders/surgery , Young Adult
4.
Sci Rep ; 6: 24683, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27080158

ABSTRACT

Functional brain development is characterized by sensitive periods during which experience must be available to allow for the full development of neural circuits and associated behavior. Yet, only few neural markers of sensitive period plasticity in humans are known. Here we employed electroencephalographic recordings in a unique sample of twelve humans who had been blind from birth and regained sight through cataract surgery between four months and 16 years of age. Two additional control groups were tested: a group of visually impaired individuals without a history of total congenital blindness and a group of typically sighted individuals. The EEG was recorded while participants performed a visual discrimination task involving intact and scrambled biological motion stimuli. Posterior alpha and theta oscillations were evaluated. The three groups showed indistinguishable behavioral performance and in all groups evoked theta activity varied with biological motion processing. By contrast, alpha oscillatory activity was significantly reduced only in individuals with a history of congenital cataracts. These data document on the one hand brain mechanisms of functional recovery (related to theta oscillations) and on the other hand, for the first time, a sensitive period for the development of alpha oscillatory activity in humans.


Subject(s)
Blindness/congenital , Vision, Ocular , Adolescent , Adult , Blindness/physiopathology , Blindness/surgery , Child , Electroencephalography , Evoked Potentials, Visual , Female , Humans , Male , Photic Stimulation , Task Performance and Analysis , Young Adult
5.
Cortex ; 71: 359-67, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26301874

ABSTRACT

Naturally occurring sensory deprivation in humans provides a unique opportunity to identify sensitive phases for the development of neuro-cognitive functions. Patients who had experienced a transient period of congenital visual deprivation due to bilateral dense cataracts (congenital cataract, cc) have shown, after visual re-afferentation, deficits in a number of higher visual functions including global motion and face processing. By contrast, biological motion (BM) perception seemed to be spared. The present study investigated the neural correlates of BM processing in a sample of 12 congenital cataract-reversal individuals who had underwent visual restoration surgery at the age of a few months up to several years. The individual threshold for extracting BM from noise was assessed in a behavioral task while event-related potentials (ERPs) were recorded in response to point-light displays of a walking man and of a scrambled version of the same stimuli. The threshold of the cc group at detecting BM did not differ from that of a group of matched controls (mc). In both groups, the N1 was modulated by BM. These largely unimpaired neural responses to BM stimuli together with a lack of behavioral group differences suggest that, in contrast to the neural systems for faces the neural systems for BM processing specialize independent of early visual input.


Subject(s)
Motion Perception/physiology , Photic Stimulation , Adolescent , Adult , Cataract/congenital , Cataract/psychology , Cataract Extraction , Child , Electroencephalography , Evoked Potentials , Female , Humans , Male , Psychomotor Performance , Sensory Deprivation , Sensory Thresholds , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...