Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Curr Biol ; 34(9): R418-R434, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714175

ABSTRACT

Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Ecology/methods , Environmental Restoration and Remediation/methods , Biodiversity , Climate Change
2.
Ecology ; : e4323, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769601

ABSTRACT

Understanding how climate and local stressors interact is paramount for predicting future ecosystem structure. The effects of multiple stressors are often examined in small-scale and short-term field experiments, limiting understanding of the spatial and temporal generality of the findings. Using a 22-year observational dataset of plant and grazer abundance in a southeastern US salt marsh, we analyzed how changes in drought and grazer density combined to affect plant biomass. We found: (1) increased drought severity and higher snail density both correlated with lower plant biomass; (2) drought and snail effects interacted additively; and, (3) snail effects had a threshold, with additive top-down effects only occurring when snails were present at high densities. These results suggest that the emergence of multiple stressor effects can be density dependent, and they validate short-term experimental evidence that consumers can augment environmental stress. These findings have important implications for predicting future ecosystem structure and managing natural ecosystems.

3.
Sci Total Environ ; 898: 165544, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37453706

ABSTRACT

Coastal saltmarshes provide globally important ecosystem services including 'blue carbon' sequestration, flood protection, pollutant remediation, habitat provision and cultural value. Large portions of marshes have been lost or fragmented as a result of land reclamation, embankment construction, and pollution. Sea level rise threatens marsh survival by blocking landward migration where coastlines have been developed. Research-informed saltmarsh conservation and restoration efforts are helping to prevent further loss, yet significant knowledge gaps remain. Using a mixed methods approach, this paper identifies ten research priorities through an online questionnaire and a residential workshop attended by an international, multi-disciplinary network of 35 saltmarsh experts spanning natural, physical and social sciences across research, policy, and practitioner sectors. Priorities have been grouped under four thematic areas of research: Saltmarsh Area Extent, Change and Restoration Potential (including past, present, global variation), Spatio-social contexts of Ecosystem Service delivery (e.g. influences of environmental context, climate change, and stakeholder groups on service provisioning), Patterns and Processes in saltmarsh functioning (global drivers of saltmarsh ecosystem structure/function) and Management and Policy Needs (how management varies contextually; challenges/opportunities for management). Although not intended to be exhaustive, the challenges, opportunities, and strategies for addressing each research priority examined here, providing a blueprint of the work that needs to be done to protect saltmarshes for future generations.


Subject(s)
Conservation of Natural Resources , Ecosystem , Wetlands , Climate Change , Sea Level Rise
4.
Proc Natl Acad Sci U S A ; 120(23): e2220678120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252966

ABSTRACT

Global change has converted many structurally complex and ecologically and economically valuable coastlines to bare substrate. In the structural habitats that remain, climate-tolerant and opportunistic species are increasing in response to environmental extremes and variability. The shifting of dominant foundation species identity with climate change poses a unique conservation challenge because species vary in their responses to environmental stressors and to management. Here, we combine 35 y of watershed modeling and biogeochemical water quality data with species comprehensive aerial surveys to describe causes and consequences of turnover in seagrass foundation species across 26,000 ha of habitat in the Chesapeake Bay. Repeated marine heatwaves have caused 54% retraction of the formerly dominant eelgrass (Zostera marina) since 1991, allowing 171% expansion of the temperature-tolerant widgeongrass (Ruppia maritima) that has likewise benefited from large-scale nutrient reductions. However, this phase shift in dominant seagrass identity now presents two significant shifts for management: Widgeongrass meadows are not only responsible for rapid, extensive recoveries but also for the largest crashes over the last four decades; and, while adapted to high temperatures, are much more susceptible than eelgrass to nutrient pulses driven by springtime runoff. Thus, by selecting for rapid post-disturbance recolonization but low resistance to punctuated freshwater flow disturbance, climate change could threaten the Chesapeake Bay seagrass' ability to provide consistent fishery habitat and sustain functioning over time. We demonstrate that understanding the dynamics of the next generation of foundation species is a critical management priority, because shifts from relatively stable habitat to high interannual variability can have far-reaching consequences across marine and terrestrial ecosystems.


Subject(s)
Alismatales , Zosteraceae , Alismatales/physiology , Ecosystem , Climate Change , Bays
5.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35235355

ABSTRACT

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

6.
Ecology ; 103(2): e03572, 2022 02.
Article in English | MEDLINE | ID: mdl-34706065

ABSTRACT

Feral hogs modify ecosystems by consuming native species and altering habitat structure. These invasions can generate fundamentally different post-invasion habitats when disturbance changes community structure, ecosystem function, or recovery dynamics. Here, we use multiple three-year exclusion experiments to describe how feral hogs affect hyper-productive brackish marshes over time. We find that infrequent yet consistent hog foraging and trampling suppresses dominant plants by generating a perpetually disturbed habitat that favors competitively inferior species and disallows full vegetative recovery over time. Along borders between plant monocultures, trampling destroys dominant graminoids responsible for most aboveground marsh biomass while competitively inferior plants increase fivefold. Hog activities shift the brackish marsh disturbance regime from pulse to press, which changes the plant community: competitively inferior plants increase coverage, species diversity is doubled, and live cover is lowered by 30% as large plants are unable to take hold in hog-disturbed areas. Release from disturbance does not result in complete recovery (i.e., dominant plant monocultures) because hog consumer control is a combination of both top-down control and broader engineering effects. These results highlight how habitats are susceptible to invasive effects outside of structural destruction alone, especially if large consumers are pervasive over time and change the dynamics that sustain recovery.


Subject(s)
Ecosystem , Wetlands , Biomass , Plants , Swine
7.
Nat Commun ; 12(1): 6290, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725328

ABSTRACT

Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.


Subject(s)
Behavior, Animal , Bivalvia/growth & development , Ecosystem , Plant Development/physiology , Poaceae/growth & development , Symbiosis , Animals , Conservation of Natural Resources/methods , Swine , Wetlands
8.
Oecologia ; 187(1): 205-217, 2018 05.
Article in English | MEDLINE | ID: mdl-29557538

ABSTRACT

Climate change and consumer outbreaks are driving ecosystem collapse worldwide. Although much research has demonstrated that these factors can interact, how heterogeneity in top-down control intensity and physical forcing modulates ecosystem resilience to climate stress remains poorly understood. Here, we explore whether the nocturnal herbivorous crab Sesarma reticulatum can control spatially dominant cordgrass (Spartina alterniflora) growth and how its top-down effects vary with crab density, drought stress, and large-scale disturbance in southeastern US salt marshes. In multiple field experiments and surveys, we show that Sesarma depresses cordgrass growth and that its effects increase in a saturating manner with increasing crab density, such that the highest naturally occurring densities of this consumer can trigger local cordgrass die-off. This top-down effect of Sesarma is similar in magnitude to what is thought to be the dominant grazer in the system, the marsh periwinkle snail Littoraria irrorata. In a drought stress by Sesarma density experiment, we further show that salinity stress and intensive crab herbivory additively suppress cordgrass drought resistance. After drought subsides, surveys and experiments reveal that Sesarma also stifles cordgrass re-growth into existing die-off areas. Together, these results show that multiple grazers powerfully regulate the productivity and drought resilience of these intertidal grasslands and that heterogeneity in physical stress and consumer density can dictate when and where top-down forcing is important. More generally, this work provides a rare, experimental demonstration of the critical role top-down control can play across the initiation and recovery stages of ecosystem die-off.


Subject(s)
Brachyura , Wetlands , Animals , Climate Change , Ecosystem , Poaceae
9.
Curr Biol ; 25(14): 1938-43, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26166784

ABSTRACT

The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales. Reconciling the threat of global biodiversity loss with recent evidence of stability at fine spatial scales is a major challenge and requires a nuanced approach to biodiversity change that integrates ecological understanding. With a new dataset of 471 diversity time series spanning from 1962 to 2015 from marine coastal ecosystems, we tested (1) whether biodiversity changed at local scales in recent decades, and (2) whether we can ignore ecological context (e.g., proximate human impacts, trophic level, spatial scale) and still make informative inferences regarding local change. We detected a predominant signal of increasing species richness in coastal systems since 1962 in our dataset, though net species loss was associated with localized effects of anthropogenic impacts. Our geographically extensive dataset is unlikely to be a random sample of marine coastal habitats; impacted sites (3% of our time series) were underrepresented relative to their global presence. These local-scale patterns do not contradict the prospect of accelerating global extinctions but are consistent with local species loss in areas with direct human impacts and increases in diversity due to invasions and range expansions in lower impact areas. Attempts to detect and understand local biodiversity trends are incomplete without information on local human activities and ecological context.


Subject(s)
Aquatic Organisms/physiology , Biodiversity , Conservation of Natural Resources , Models, Biological , Time Factors
10.
Nat Commun ; 6: 6936, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25907115

ABSTRACT

The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.


Subject(s)
Biodiversity , Food Chain , Animals , Computer Simulation , Herbivory , Models, Biological , Plants , Sensitivity and Specificity
11.
Proc Natl Acad Sci U S A ; 110(51): 20621-6, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297926

ABSTRACT

The global biodiversity crisis impairs the valuable benefits ecosystems provide humans. These nature-generated benefits are defined by a multitude of different ecosystem functions that operate simultaneously. Although several studies have simulated species loss in communities and tracked the response of single functions such as productivity or nutrient cycling, these studies have involved relatively similar taxa, and seldom are strikingly different functions examined. With the exception of highly managed ecosystems such as agricultural fields, rarely are we interested in only one function being performed well. Instead, we rely on ecosystems to deliver several different functions at the same time. Here, we experimentally investigated the extinction impacts of dominant consumers in a salt marsh. These consumers are remarkably phylogenetically diverse, spanning two kingdoms (i.e., Animalia and Fungi). Our field studies reveal that a diverse consumer assemblage significantly enhances simultaneous functioning of disparate ecosystem processes (i.e., productivity, decomposition, and infiltration). Extreme functional and phylogenetic differences among consumers underlie this relationship. Each marsh consumer affected at least one different ecosystem function, and each individual function was affected by no more than two consumers. The implications of these findings are profound: If we want ecosystems to perform many different functions well, it is not just number of species that matter. Rather, the presence of species representing markedly different ecologies and biology is also essential to maximizing multiple functions. Moreover, this work emphasizes the need to incorporate both microcomponents and macrocomponents of food webs to accurately predict biodiversity declines on integrated-ecosystem functioning.


Subject(s)
Biodiversity , Food Chain , Fungi/physiology , Models, Biological , Phylogeny , Wetlands , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...