Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(5): e0232952, 2020.
Article in English | MEDLINE | ID: mdl-32407397

ABSTRACT

In minimally invasive surgery, maneuverability is usually limited and a large number of degrees of freedom (DOF) is highly demanded. However, increasing the DOF usually means increasing the complexity of the surgical instrument leading to long fabrication and assembly times. In this work, we propose the first fully 3D printed handheld, multi-steerable device. The proposed device is mechanically actuated, and possesses five serially controlled segments. We designed a new compliant segment providing high torsion and axial stiffness as well as a low bending stiffness by merging the functions of four helicoids and a continuum backbone. Compliant segments were combined to form the compliant shaft of the new device. In order to control this compliant shaft, a control handle was designed that mimics the shaft structure. A prototype called the HelicoFlex was built using only three 3D printed parts. HelicoFlex, with its 10 degrees of freedom, showed a fluid motion in performing single and multi-curved paths. The multi-steerable instrument was 3D printed without any support material in the compliant shaft itself. This work contributes to enlarge the body of knowledge regarding how additive manufacturing could be used in the production of multi-steerable surgical instruments for personalized medicine.


Subject(s)
Biomedical Technology/instrumentation , Minimally Invasive Surgical Procedures/instrumentation , Printing, Three-Dimensional/instrumentation , Elasticity , Equipment Design , Humans , Minimally Invasive Surgical Procedures/methods , Surgical Instruments
2.
PLoS One ; 14(9): e0221165, 2019.
Article in English | MEDLINE | ID: mdl-31483792

ABSTRACT

Needles with diameter under 1 mm are used in various medical applications to limit the risk of complication and patient discomfort during the procedure. Next to a small diameter, needle steerability is an important property for reaching targets located deep inside the body accurately and precisely. In this paper, we present a 0.5-mm prototype probe which is able to steer in three dimensions (3D) without the need of axial rotation. The prototype consists of three Nitinol wires (each with a diameter of 0.125 mm) with a pre-curved tip. The wires are kept together by a stainless steel tube. Each wire is clamped to a block which translates along a leadscrew, the rotation of the latter being controlled by a wheel connected at the distal end of the leadscrew. The tip bends upon retraction of one or two wires. When pushed through a soft solid structure (e.g., a soft tissue or soft tissue phantom), the probe deflects due to off-axis forces acting on its tip by the surrounding structure. We tested the performance of the prototype into a 10% wt gelatine phantom, in terms of the predictability of the steering direction and the controllability of the final position after steering inside the substrate. The results showed that the probe steered in the direction of the retracted wire and that the final position varied from small deflections from the straight path when the wires were slightly retracted, to sharp curvatures for large wire retraction. The probe could be used in various applications, from cases where only a small correction of the path in one direction is needed to cases where the path to be followed includes obstacles and curves in multiple directions.


Subject(s)
Equipment Design , Gelatin/chemistry , Needles , Alloys/chemistry , Stainless Steel
3.
PLoS One ; 11(7): e0158277, 2016.
Article in English | MEDLINE | ID: mdl-27454125

ABSTRACT

BACKGROUND: In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these mechanisms fulfill. METHODS: We systematically searched the literature using Scopus and Web of Knowledge to retrieve articles about solid projectiles that either are produced in the body of the organism or belong to the body and undergo a ballistic phase. The shooting mechanisms were categorized based on the energy management prior to and during shooting. RESULTS: Shooting mechanisms were identified with projectile masses ranging from 1·10-9 mg in spores of the fungal phyla Ascomycota and Zygomycota to approximately 10,300 mg for the ballistic tongue of the toad Bufo alvarius. The energy for shooting is generated through osmosis in fungi, plants, and animals or muscle contraction in animals. Osmosis can be induced by water condensation on the system (in fungi), or water absorption in the system (reaching critical pressures up to 15.4 atmospheres; observed in fungi, plants, and animals), or water evaporation from the system (reaching up to -197 atmospheres; observed in plants and fungi). The generated energy is stored as elastic (potential) energy in cell walls in fungi and plants and in elastic structures in animals, with two exceptions: (1) in the momentum catapult of Basidiomycota the energy is stored in a stalk (hilum) by compression of the spore and droplets and (2) in Sphagnum energy is mainly stored in compressed air. Finally, the stored energy is transformed into kinetic energy of the projectile using a catapult mechanism delivering up to 4,137 J/kg in the osmotic shooting mechanism in cnidarians and 1,269 J/kg in the muscle-powered appendage strike of the mantis shrimp Odontodactylus scyllarus. The launch accelerations range from 6.6g in the frog Rana pipiens to 5,413,000g in cnidarians, the launch velocities from 0.1 m/s in the fungal phylum Basidiomycota to 237 m/s in the mulberry Morus alba, and the launch distances from a few thousands of a millimeter in Basidiomycota to 60 m in the rainforest tree Tetraberlinia moreliana. The mass-specific power outputs range from 0.28 W/kg in the water evaporation mechanism in Basidiomycota to 1.97·109 W/kg in cnidarians using water absorption as energy source. DISCUSSION AND CONCLUSIONS: The magnitude of accelerations involved in shooting is generally scale-dependent with the smaller the systems, discharging the microscale projectiles, generating the highest accelerations. The mass-specific power output is also scale dependent, with smaller mechanisms being able to release the energy for shooting faster than larger mechanisms, whereas the mass-specific work delivered by the shooting mechanism is mostly independent of the scale of the shooting mechanism. Higher mass-specific work-values are observed in osmosis-powered shooting mechanisms (≤ 4,137 J/kg) when compared to muscle-powered mechanisms (≤ 1,269 J/kg). The achieved launch parameters acceleration, velocity, and distance, as well as the associated delivered power output and work, thus depend on the working principle and scale of the shooting mechanism.


Subject(s)
Biophysical Phenomena , Animals , Energy Metabolism , Fungi/physiology , Plant Physiological Phenomena , Predatory Behavior
4.
Bioinspir Biomim ; 10(6): 066013, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26623568

ABSTRACT

Endoscopic endonasal surgery is currently regarded as the 'gold standard' for operating on pituitary gland tumors, and is becoming more and more accepted for treatment of other skull base lesions. However, endoscopic surgical treatment of most skull base pathologies, including certain pituitary tumors, is severely impaired by current instruments lack of maneuverability. Especially, gaining access to, and visibility of, difficult-to-reach anatomical corners without interference with surrounding neurovascular structures or other instruments, is a challenge. In this context there is the need for instruments that are able to provide a stable shaft position, while both the orientation and the position of the end-effector can be independently controlled. Current instruments that allow for this level of maneuverability are usually mechanically complex, and hence less suitable for mass production. This study therefore focuses on the development of a new actuation technique that allows for the required maneuverability while reducing the construction complexity. This actuation technique, referred to as multi-actuation, integrates multiple cable routings into a single steerable structure. Multi-actuation has been successfully integrated and tested in a handheld prototype instrument called HelixFlex. HelixFlex contains a 4 degrees of freedom maneuverable 5.8 mm (diameter) tip and shows promising results concerning its maneuverability and potential rigidity.


Subject(s)
Biomimetics/instrumentation , Endoscopes , Natural Orifice Endoscopic Surgery/instrumentation , Neurosurgical Procedures/instrumentation , Osteotomy/instrumentation , Skull Base/surgery , Biomimetic Materials/chemistry , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Humans , Male
5.
Surg Endosc ; 29(6): 1281-96, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25249149

ABSTRACT

BACKGROUND: Since the advent of Natural Orifice Translumenal Endoscopic Surgery (NOTES) and single incision laparoscopic surgery (SILS), a variety of multitasking platforms have been under development with the objective to allow for bimanual surgical tasks to be performed. These instruments show large differences in construction, enabled degrees of freedom (DOF), and control aspects. METHODS: Through a literature review, the absence of an in-depth analysis and structural comparison of these instruments in the literature is addressed. All the designed and prototyped multitasking platforms are identified and categorized with respect to their actively controlled DOF in their shafts and branches. Additionally, a graphical overview of patents, bench test experiments, and animal and/or human trials performed with each instrument is provided. RESULTS: The large range of instruments, various actuation strategies, and different direct and indirect control methods implemented in the instruments show that an optimal instrument configuration has not been found yet. Moreover, several questions remain unanswered with respect to which DOF are essential for bimanual tasks and which control methods are best suited for the control of these DOF. CONCLUSIONS: Considering the complexity of the currently prototyped and tested instruments, future NOTES and SILS instrument development will potentially necessitate a reduction of the available DOF to minimize the control complexity, thereby allowing for single surgeon bimanual task execution.


Subject(s)
Laparoscopy/instrumentation , Natural Orifice Endoscopic Surgery/instrumentation , Animals , Equipment Design , Humans
6.
Minim Invasive Ther Allied Technol ; 24(2): 77-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25263681

ABSTRACT

INTRODUCTION: Steerable instruments are a promising trend in minimally invasive surgery (MIS), due to their manoeuvring capabilities enabling reaching over obstacles. Despite the great number of steerable joint designs, currently available steerable tips tend to be vulnerable to external loading, thus featuring low bending stiffness. This work aims to provide empirical evidence that the bending stiffness can be considerably increased by using fully actuated joint constructions, enabling left/right and up/down tip rotations with the minimum of two degrees of freedom (DOF), rather than conventional underactuated constructions enabling these rotations with more than two DOF. MATERIAL AND METHODS: A steerable MIS instrument prototype with a fully actuated joint construction was compared to state-of-the-art underactuated steerable instruments in a number of tip deflection experiments. The tip deflections due to loading were measured by means of a universal testing machine in four bending scenarios: straight and bent over 20°, 40° and 60°. RESULTS AND CONCLUSIONS: The experimental results support the claim that a fully actuated joint construction exhibits a significantly larger bending stiffness than an underactuated joint construction. Furthermore, it was shown that the underactuated instrument tips show a considerable difference between their neutral positions before and after loading, which could also be greatly minimised by full actuation.


Subject(s)
Elasticity , Minimally Invasive Surgical Procedures/instrumentation , Surgical Instruments , Equipment Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...