Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38543193

ABSTRACT

In recent years, nuclear medicine has gained great interest, partly due to the success story of [177Lu]Lu-PSMA-617 (PluvictoTM). Still, in-depth preclinical characterization of radiopharmaceuticals mainly happens at centers that allow working with radioactive material. To support the development of novel radiopharmaceuticals, alternative non-radioactive characterization assays are highly desirable. The aim of this study was to demonstrate that inductively coupled plasma mass spectrometry (ICP-MS) associated with a chromatographic system can serve as a surrogate for the classical high-performance liquid chromatography (HPLC)-radiodetector combination for preclinical in vitro characterization of non-radioactive metal-labeled analogs of radiopharmaceuticals. In this proof-of-concept study, we demonstrate the applicability of HPLC-ICP-MS by assessing the stability of 175Lu- and natGa-labeled prostate-specific membrane antigen (PSMA)-targeting peptidomimetics, single domain antibody (sdAb) conjugates, and monoclonal antibody (mAb) conjugates. 175Lu-labeled DOTAGA-conjugated and natGa-labeled NODAGA-conjugated sdAbs and mAbs showed the highest stability with >90% still intact after 24 h. The peptidomime-tics [175Lu]Lu-PSMA-617 and [natGa]Ga-PSMA-11 showed identical in vitro serum stability as it was reported for their corresponding radioligands with >99% intact species after 24 h incubation in mouse serum, demonstrating the reliability of the method. Hence, the established HPLC-ICP-MS methods can support the development of novel radiopharmaceuticals in a classical pharmaceutical setting.

2.
Mol Pharm ; 20(4): 2150-2158, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36826437

ABSTRACT

This study addresses the question whether inductively coupled plasma mass spectrometry (ICP-MS) can be used as a method for the in vitro and in vivo characterization of non-radioactive metal conjugates to predict the properties of analogous radiopharmaceuticals. In a "proof-of-concept" study, the prostate-specific membrane antigen (PSMA)-targeting [175Lu]Lu-PSMA-617 and [159Tb]Tb-PSMA-617 were compared with their respective radiolabeled analogues, [177Lu]Lu-PSMA-617 (PLUVICTO, Novartis) and [161Tb]Tb-PSMA-617. ICP-MS and conventional γ-counting of the cell samples revealed almost identical results (<6% absolute difference between the two technologies) for the in vitro uptake and internalization of the (radio)metal conjugates, irrespective of the employed methodology. In vivo, an equal uptake in PSMA-positive PC-3 PIP tumor xenografts was determined 1 h after the injection of [175Lu]Lu-/[177Lu]Lu-PSMA-617 (41 ± 6% ID/g and 44 ± 12% IA/g, respectively) and [159Tb]Tb-/[161Tb]Tb-PSMA-617 (44 ± 5% ID/g and 44 ± 5% IA/g, respectively). It was further revealed that it is crucial to use the same ratios of the (radio)metal-labeled and unlabeled ligands for both methodologies to obtain equal data in organs in which receptor saturation was reached such as the kidneys (12 ± 2% ID/g vs 10 ± 1% IA/g, 1 h after injection). The data of this study demonstrate that the use of high-sensitivity ICP-MS allows reliable and predictive quantification of compounds labeled with stable metal isotopes in cell and tissue samples obtained in preclinical studies. It can, hence, be employed as a valid alternative to the state-of-the-art γ-counting methodology to detect radioactive ligands.


Subject(s)
Prostatic Neoplasms , Radiopharmaceuticals , Male , Humans , Radiopharmaceuticals/chemistry , Prostatic Neoplasms/pathology , Cell Line, Tumor , Antigens, Surface , Glutamate Carboxypeptidase II , Lutetium/chemistry , Heterocyclic Compounds, 1-Ring/chemistry
3.
MAbs ; 9(8): 1337-1348, 2017.
Article in English | MEDLINE | ID: mdl-28846476

ABSTRACT

Patent expiration of first-generation biologics and the high cost of innovative biologics are 2 drivers for the development of biosimilar products. There are, however, technical challenges to the production of exact copies of such large molecules. In this study, we performed a head-to-head comparison between the originator anti-VEGF-A Fab product LUCENTIS® (ranibizumab) and an intended copy product using an integrated analytical approach. While no differences could be observed using size-exclusion chromatography, capillary electrophoresis-sodium dodecyl sulfate and potency assays, different acidic peaks were identified with cation ion exchange chromatography and capillary zone electrophoresis. Further investigation of the intact Fab, subunits and primary sequence with mass spectrometry demonstrated the presence of a modified light chain variant in the intended copy product batches. This variant was characterized with a mass increase of 27.01 Da compared to the originator sequence and its abundance was estimated in the range of 6-9% of the intended copy product light chain. MS/MS spectra interrogation confirmed that this modification relates to a serine to asparagine sequence variant found in the intended copy product light chain. We demonstrated that the integration of high-resolution and sensitive orthogonal technologies was beneficial to assess the similarity of an originator and an intended copy product.


Subject(s)
Asparagine/chemistry , Biosimilar Pharmaceuticals/chemistry , Ranibizumab/chemistry , Serine/chemistry , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Asparagine/genetics , Asparagine/immunology , Chromatography, Liquid/methods , Genetic Variation/immunology , Humans , Ranibizumab/genetics , Ranibizumab/immunology , Serine/genetics , Serine/immunology
4.
MAbs ; 9(5): 820-830, 2017 07.
Article in English | MEDLINE | ID: mdl-28379786

ABSTRACT

Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner.


Subject(s)
Antibodies, Monoclonal/analysis , Mass Spectrometry/methods , Humans , Recombinant Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...