Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Sci Adv ; 10(14): eadk3674, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569027

ABSTRACT

The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aß42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aß42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aß42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/etiology , Alzheimer Disease/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , tau Proteins , Biomarkers , Amyloid beta-Peptides , Peptide Fragments
2.
Brain Commun ; 6(2): fcae081, 2024.
Article in English | MEDLINE | ID: mdl-38505230

ABSTRACT

Alzheimer's disease biomarkers are crucial to understanding disease pathophysiology, aiding accurate diagnosis and identifying target treatments. Although the number of biomarkers continues to grow, the relative utility and uniqueness of each is poorly understood as prior work has typically calculated serial pairwise relationships on only a handful of markers at a time. The present study assessed the cross-sectional relationships among 27 Alzheimer's disease biomarkers simultaneously and determined their ability to predict meaningful clinical outcomes using machine learning. Data were obtained from 527 community-dwelling volunteers enrolled in studies at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University in St Louis. We used hierarchical clustering to group 27 imaging, CSF and plasma measures of amyloid beta, tau [phosphorylated tau (p-tau), total tau t-tau)], neuronal injury and inflammation drawn from MRI, PET, mass-spectrometry assays and immunoassays. Neuropsychological and genetic measures were also included. Random forest-based feature selection identified the strongest predictors of amyloid PET positivity across the entire cohort. Models also predicted cognitive impairment across the entire cohort and in amyloid PET-positive individuals. Four clusters emerged reflecting: core Alzheimer's disease pathology (amyloid and tau), neurodegeneration, AT8 antibody-associated phosphorylated tau sites and neuronal dysfunction. In the entire cohort, CSF p-tau181/Aß40lumi and Aß42/Aß40lumi and mass spectrometry measurements for CSF pT217/T217, pT111/T111, pT231/T231 were the strongest predictors of amyloid PET status. Given their ability to denote individuals on an Alzheimer's disease pathological trajectory, these same markers (CSF pT217/T217, pT111/T111, p-tau/Aß40lumi and t-tau/Aß40lumi) were largely the best predictors of worse cognition in the entire cohort. When restricting analyses to amyloid-positive individuals, the strongest predictors of impaired cognition were tau PET, CSF t-tau/Aß40lumi, p-tau181/Aß40lumi, CSF pT217/217 and pT205/T205. Non-specific CSF measures of neuronal dysfunction and inflammation were poor predictors of amyloid PET and cognitive status. The current work utilized machine learning to understand the interrelationship structure and utility of a large number of biomarkers. The results demonstrate that, although the number of biomarkers has rapidly expanded, many are interrelated and few strongly predict clinical outcomes. Examining the entire corpus of available biomarkers simultaneously provides a meaningful framework to understand Alzheimer's disease pathobiological change as well as insight into which biomarkers may be most useful in Alzheimer's disease clinical practice and trials.

3.
Nat Med ; 30(4): 1085-1095, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382645

ABSTRACT

With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. In this study, we evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-ß (Aß) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n = 1,422) and the US Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) cohort (n = 337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aß42/40 and p-tau181/Aß42. The primary and secondary outcomes were detection of brain Aß or tau pathology, respectively, using positron emission tomography (PET) imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aß PET status, with an area under the curve (AUC) for both between 0.95 and 0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired subcohorts (BioFINDER-2: n = 720; Knight ADRC: n = 50), plasma %p-tau217 had an accuracy, a positive predictive value and a negative predictive value of 89-90% for Aß PET and 87-88% for tau PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two-cutoffs approach. Blood plasma %p-tau217 demonstrated performance that was clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high-performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , tau Proteins , Biomarkers , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/cerebrospinal fluid , Hematologic Tests , Positron-Emission Tomography
4.
Ann Neurol ; 95(5): 951-965, 2024 May.
Article in English | MEDLINE | ID: mdl-38400792

ABSTRACT

OBJECTIVE: A clock relating amyloid positron emission tomography (PET) to time was used to estimate the timing of biomarker changes in sporadic Alzheimer disease (AD). METHODS: Research participants were included who underwent cerebrospinal fluid (CSF) collection within 2 years of amyloid PET. The ages at amyloid onset and AD symptom onset were estimated for each individual. The timing of change for plasma, CSF, imaging, and cognitive measures was calculated by comparing restricted cubic splines of cross-sectional data from the amyloid PET positive and negative groups. RESULTS: The amyloid PET positive sub-cohort (n = 118) had an average age of 70.4 ± 7.4 years (mean ± standard deviation) and 16% were cognitively impaired. The amyloid PET negative sub-cohort (n = 277) included individuals with low levels of amyloid plaque burden at all scans who were cognitively unimpaired at the time of the scans. Biomarker changes were detected 15-19 years before estimated symptom onset for CSF Aß42/Aß40, plasma Aß42/Aß40, CSF pT217/T217, and amyloid PET; 12-14 years before estimated symptom onset for plasma pT217/T217, CSF neurogranin, CSF SNAP-25, CSF sTREM2, plasma GFAP, and plasma NfL; and 7-9 years before estimated symptom onset for CSF pT205/T205, CSF YKL-40, hippocampal volumes, and cognitive measures. INTERPRETATION: The use of an amyloid clock enabled visualization and analysis of biomarker changes as a function of estimated years from symptom onset in sporadic AD. This study demonstrates that estimated years from symptom onset based on an amyloid clock can be used as a continuous staging measure for sporadic AD and aligns with findings in autosomal dominant AD. ANN NEUROL 2024;95:951-965.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Positron-Emission Tomography , Humans , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Female , Male , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Middle Aged , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Aged, 80 and over , Cross-Sectional Studies , Time Factors , Age of Onset , Cohort Studies , Disease Progression , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/blood , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/blood , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology
5.
Res Sq ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38260384

ABSTRACT

Objective: The use of blood-based biomarkers of Alzheimer disease (AD) may facilitate access to biomarker testing of groups that have been historically under-represented in research. We evaluated whether plasma Aß42/40 has similar or different baseline levels and longitudinal rates of change in participants racialized as Black or White. Methods: The Study of Race to Understand Alzheimer Biomarkers (SORTOUT-AB) is a multi-center longitudinal study to evaluate for potential differences in AD biomarkers between individuals racialized as Black or White. Plasma samples collected at three AD Research Centers (Washington University, University of Pennsylvania, and University of Alabama-Birmingham) underwent analysis with C2N Diagnostics' PrecivityAD™ blood test for Aß42 and Aß40. General linear mixed effects models were used to estimate the baseline levels and rates of longitudinal change for plasma Aß measures in both racial groups. Analyses also examined whether dementia status, age, sex, education, APOE ε4 carrier status, medical comorbidities, or fasting status modified potential racial differences. Results: Of the 324 Black and 1,547 White participants, there were 158 Black and 759 White participants with plasma Aß measures from at least two longitudinal samples over a mean interval of 6.62 years. At baseline, the group of Black participants had lower levels of plasma Aß40 but similar levels of plasma Aß42 as compared to the group of White participants. As a result, baseline plasma Aß42/40 levels were higher in the Black group than the White group, consistent with the Black group having lower levels of amyloid pathology. Racial differences in plasma Aß42/40 were not modified by age, sex, education, APOE ε4 carrier status, medical conditions (hypertension and diabetes), or fasting status. Despite differences in baseline levels, the Black and White groups had a similar longitudinal rate of change in plasma Aß42/40. Interpretation: Black individuals participating in AD research studies had a higher mean level of plasma Aß42/40, consistent with a lower level of amyloid pathology, which, if confirmed, may imply a lower proportion of Black individuals being eligible for AD clinical trials in which the presence of amyloid is a prerequisite. However, there was no significant racial difference in the rate of change in plasma Aß42/40, suggesting that amyloid pathology accumulates similarly across racialized groups.

6.
Ann Neurol ; 95(2): 299-313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897306

ABSTRACT

OBJECTIVE: This study was undertaken to apply established and emerging cerebrospinal fluid (CSF) biomarkers to improve diagnostic accuracy in patients with rapidly progressive dementia (RPD). Overlap in clinical presentation and results of diagnostic tests confounds etiologic diagnosis in patients with RPD. Objective measures are needed to improve diagnostic accuracy and to recognize patients with potentially treatment-responsive causes of RPD. METHODS: Biomarkers of Alzheimer disease neuropathology (amyloid-ß 42/40 ratio, phosphorylated tau [p-tau181, p-tau231]), neuroaxonal/neuronal injury (neurofilament light chain [NfL], visinin-like protein-1 [VILIP-1], total tau), neuroinflammation (chitinase-3-like protein [YKL-40], soluble triggering receptor expressed on myeloid cells 2 [sTREM2], glial fibrillary acidic protein [GFAP], monocyte chemoattractant protein-1 [MCP-1]), and synaptic dysfunction (synaptosomal-associated protein 25kDa, neurogranin) were measured in CSF obtained at presentation from 78 prospectively accrued patients with RPD due to neurodegenerative, vascular, and autoimmune/inflammatory diseases; 35 age- and sex-matched patients with typically progressive neurodegenerative disease; and 72 cognitively normal controls. Biomarker levels were compared across etiologic diagnoses, by potential treatment responsiveness, and between patients with typical and rapidly progressive presentations of neurodegenerative disease. RESULTS: Alzheimer disease biomarkers were associated with neurodegenerative causes of RPD. High NfL, sTREM2, and YKL-40 and low VILIP-1 identified patients with autoimmune/inflammatory diseases. MCP-1 levels were highest in patients with vascular causes of RPD. A multivariate model including GFAP, MCP-1, p-tau181, and sTREM2 identified the 44 patients with treatment-responsive causes of RPD with 89% accuracy. Minimal differences were observed between typical and rapidly progressive presentations of neurodegenerative disease. INTERPRETATION: Selected CSF biomarkers at presentation were associated with etiologic diagnoses and treatment responsiveness in patients with heterogeneous causes of RPD. The ability of cross-sectional biomarkers to inform upon mechanisms that drive rapidly progressive neurodegenerative disease is less clear. ANN NEUROL 2024;95:299-313.


Subject(s)
Alzheimer Disease , Dementia , Neurodegenerative Diseases , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Chitinase-3-Like Protein 1 , tau Proteins/cerebrospinal fluid , Cross-Sectional Studies , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid
7.
Stat Methods Med Res ; 33(2): 185-202, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994004

ABSTRACT

Evaluating correlations between disease biomarkers and clinical outcomes is crucial in biomedical research. During the early stages of many chronic diseases, changes in biomarkers and clinical outcomes are often subtle. A major challenge to detecting subtle correlations is that studies with large sample sizes are usually needed to achieve sufficient statistical power. This challenge is even greater when biofluid and imaging biomarker data are used because the required procedures are burdensome, perceived as invasive, and/or expensive, limiting sample sizes in individual studies. Combining data across multiple studies may increase statistical power, but biomarker data may be generated using different assay platforms, scanner types, or processing protocols, which may affect measured biomarker values. Therefore, harmonizing biomarker data is essential to combining data across studies. Bridging studies involve re-processing of a subset of samples or imaging scans to evaluate how biomarker values vary by studies. This presents an analytic challenge on how to best harmonize biomarker data across studies to allow unbiased and optimal estimates of their correlations with standardized clinical outcomes. We conceptualize that a latent biomarker underlies the observed biomarkers across studies, and propose a novel approach that integrates the data in the bridging study with the study-specific biomarker data for estimating the biological correlations between biomarkers and clinical outcomes. Through extensive simulations, we compare our method to several alternative methods/algorithms often used to estimate the correlations. Finally, we demonstrate the application of this methodology to a real-world multi-center Alzheimer's disease biomarker study to correlate cerebrospinal fluid biomarker concentrations with cognitive outcomes.


Subject(s)
Alzheimer Disease , Biomedical Research , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Biomarkers , Algorithms
8.
Ann Neurol ; 95(3): 495-506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38038976

ABSTRACT

OBJECTIVE: Biomarkers of Alzheimer disease vary between groups of self-identified Black and White individuals in some studies. This study examined whether the relationships between biomarkers or between biomarkers and cognitive measures varied by racialized groups. METHODS: Cerebrospinal fluid (CSF), amyloid positron emission tomography (PET), and magnetic resonance imaging measures were harmonized across four studies of memory and aging. Spearman correlations between biomarkers and between biomarkers and cognitive measures were calculated within each racialized group, then compared between groups by standard normal tests after Fisher's Z-transformations. RESULTS: The harmonized dataset included at least one biomarker measurement from 495 Black and 2,600 White participants. The mean age was similar between racialized groups. However, Black participants were less likely to have cognitive impairment (28% vs 36%) and had less abnormality of some CSF biomarkers including CSF Aß42/40, total tau, p-tau181, and neurofilament light. CSF Aß42/40 was negatively correlated with total tau and p-tau181 in both groups, but at a smaller magnitude in Black individuals. CSF Aß42/40, total tau, and p-tau181 had weaker correlations with cognitive measures, especially episodic memory, in Black than White participants. Correlations of amyloid measures between CSF (Aß42/40, Aß42) and PET imaging were also weaker in Black than White participants. Importantly, no differences based on race were found in correlations between different imaging biomarkers, or in correlations between imaging biomarkers and cognitive measures. INTERPRETATION: Relationships between CSF biomarkers but not imaging biomarkers varied by racialized groups. Imaging biomarkers performed more consistently across racialized groups in associations with cognitive measures. ANN NEUROL 2024;95:495-506.


Subject(s)
Alzheimer Disease , Cognition , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Positron-Emission Tomography , tau Proteins/cerebrospinal fluid , Black or African American , White
9.
Nat Aging ; 3(4): 391-401, 2023 04.
Article in English | MEDLINE | ID: mdl-37117788

ABSTRACT

Cerebrospinal fluid (CSF) amyloid-ß peptide (Aß)42/Aß40 and the concentration of tau phosphorylated at site 181 (p-tau181) are well-established biomarkers of Alzheimer's disease (AD). The present study used mass spectrometry to measure concentrations of nine phosphorylated and five nonphosphorylated tau species and phosphorylation occupancies (percentage phosphorylated/nonphosphorylated) at ten sites. In the present study we show that, in 750 individuals with a median age of 71.2 years, CSF pT217/T217 predicted the presence of brain amyloid by positron emission tomography (PET) slightly better than Aß42/Aß40 (P = 0.02). Furthermore, for individuals with positive brain amyloid by PET (n = 263), CSF pT217/T217 was more strongly correlated with the amount of amyloid (Spearman's ρ = 0.69) than Aß42/Aß40 (ρ = -0.42, P < 0.0001). In two independent cohorts of participants with symptoms of AD dementia (n = 55 and n = 90), CSF pT217/T217 and pT205/T205 were better correlated with tau PET measures than CSF p-tau181 concentration. These findings suggest that CSF pT217/T217 and pT205/T205 represent improved CSF biomarkers of amyloid and tau pathology in AD.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnosis , tau Proteins/cerebrospinal fluid , Phosphorylation , Peptide Fragments/cerebrospinal fluid , Amyloid , Biomarkers/cerebrospinal fluid
10.
Alzheimers Dement (Amst) ; 15(1): e12405, 2023.
Article in English | MEDLINE | ID: mdl-36874595

ABSTRACT

Introduction: Continuous measures of amyloid burden as measured by positron emission tomography (PET) are being used increasingly to stage Alzheimer's disease (AD). This study examined whether cerebrospinal fluid (CSF) and plasma amyloid beta (Aß)42/Aß40 could predict continuous values for amyloid PET. Methods: CSF Aß42 and Aß40 were measured with automated immunoassays. Plasma Aß42 and Aß40 were measured with an immunoprecipitation-mass spectrometry assay. Amyloid PET was performed with Pittsburgh compound B (PiB). The continuous relationships of CSF and plasma Aß42/Aß40 with amyloid PET burden were modeled. Results: Most participants were cognitively normal (427 of 491 [87%]) and the mean age was 69.0 ± 8.8 years. CSF Aß42/Aß40 predicted amyloid PET burden until a relatively high level of amyloid accumulation (69.8 Centiloids), whereas plasma Aß42/Aß40 predicted amyloid PET burden until a lower level (33.4 Centiloids). Discussion: CSF Aß42/Aß40 predicts the continuous level of amyloid plaque burden over a wider range than plasma Aß42/Aß40 and may be useful in AD staging. Highlights: Cerebrospinal fluid (CSF) amyloid beta (Aß)42/Aß40 predicts continuous amyloid positron emission tomography (PET) values up to a relatively high burden.Plasma Aß42/Aß40 is a comparatively dichotomous measure of brain amyloidosis.Models can predict regional amyloid PET burden based on CSF Aß42/Aß40.CSF Aß42/Aß40 may be useful in staging AD.

11.
Brain ; 146(7): 2944-2956, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36542469

ABSTRACT

Heterogeneity in progression to Alzheimer's disease (AD) poses challenges for both clinical prognosis and clinical trial implementation. Multiple AD-related subtypes have previously been identified, suggesting differences in receptivity to drug interventions. We identified early differences in preclinical AD biomarkers, assessed patterns for developing preclinical AD across the amyloid-tau-(neurodegeneration) [AT(N)] framework, and considered potential sources of difference by analysing the CSF proteome. Participants (n = 10) enrolled in longitudinal studies at the Knight Alzheimer Disease Research Center completed four or more lumbar punctures. These individuals were cognitively normal at baseline. Cerebrospinal fluid measures of amyloid-ß (Aß)42, phosphorylated tau (pTau181), and neurofilament light chain (NfL) as well as proteomics values were evaluated. Imaging biomarkers, including PET amyloid and tau, and structural MRI, were repeatedly obtained when available. Individuals were staged according to the amyloid-tau-(neurodegeneration) framework. Growth mixture modelling, an unsupervised clustering technique, identified three patterns of biomarker progression as measured by CSF pTau181 and Aß42. Two groups (AD Biomarker Positive and Intermediate AD Biomarker) showed distinct progression from normal biomarker status to having biomarkers consistent with preclinical AD. A third group (AD Biomarker Negative) did not develop abnormal AD biomarkers over time. Participants grouped by CSF trajectories were re-classified using only proteomic profiles (AUCAD Biomarker Positive versus AD Biomarker Negative = 0.857, AUCAD Biomarker Positive versus Intermediate AD Biomarkers = 0.525, AUCIntermediate AD Biomarkers versus AD Biomarker Negative = 0.952). We highlight heterogeneity in the development of AD biomarkers in cognitively normal individuals. We identified some individuals who became amyloid positive before the age of 50 years. A second group, Intermediate AD Biomarkers, developed elevated CSF ptau181 significantly before becoming amyloid positive. A third group were AD Biomarker Negative over repeated testing. Our results could influence the selection of participants for specific treatments (e.g. amyloid-reducing versus other agents) in clinical trials. CSF proteome analysis highlighted additional non-AT(N) biomarkers for potential therapies, including blood-brain barrier-, vascular-, immune-, and neuroinflammatory-related targets.


Subject(s)
Alzheimer Disease , Humans , Middle Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Proteome , Proteomics , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Disease Progression
12.
Lancet Neurol ; 22(1): 55-65, 2023 01.
Article in English | MEDLINE | ID: mdl-36517172

ABSTRACT

BACKGROUND: Important insights into the early pathogenesis of Alzheimer's disease can be provided by studies of autosomal dominant Alzheimer's disease and Down syndrome. However, it is unclear whether the timing and spatial distribution of amyloid accumulation differs between people with autosomal dominant Alzheimer's disease and those with Down syndrome. We aimed to directly compare amyloid changes between these two groups of people. METHODS: In this cross-sectional study, we included participants (aged ≥25 years) with Down syndrome and sibling controls who had MRI and amyloid PET scans in the first data release (January, 2020) of the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. We also included carriers of autosomal dominant Alzheimer's disease genetic mutations and non-carrier familial controls who were within a similar age range to ABC-DS participants (25-73 years) and had MRI and amyloid PET scans at the time of a data freeze (December, 2020) of the Dominantly Inherited Alzheimer Network (DIAN) study. Controls from the two studies were combined into a single group. All DIAN study participants had genetic testing to determine PSEN1, PSEN2, or APP mutation status. APOE genotype was determined from blood samples. CSF samples were collected in a subset of ABC-DS and DIAN participants and the ratio of amyloid ß42 (Aß42) to Aß40 (Aß42/40) was measured to evaluate its Spearman's correlation with amyloid PET. Global PET amyloid burden was compared with regards to cognitive status, APOE ɛ4 status, sex, age, and estimated years to symptom onset. We further analysed amyloid PET deposition by autosomal dominant mutation type. We also assessed regional patterns of amyloid accumulation by estimated number of years to symptom onset. Within a subset of participants the relationship between amyloid PET and CSF Aß42/40 was evaluated. FINDINGS: 192 individuals with Down syndrome and 33 sibling controls from the ABC-DS study and 265 carriers of autosomal dominant Alzheimer's disease mutations and 169 non-carrier familial controls from the DIAN study were included in our analyses. PET amyloid centiloid and CSF Aß42/40 were negatively correlated in carriers of autosomal dominant Alzheimer's disease mutations (n=216; r=-0·565; p<0·0001) and in people with Down syndrome (n=32; r=-0·801; p<0·0001). There was no difference in global PET amyloid burden between asymptomatic people with Down syndrome (mean 18·80 centiloids [SD 28·33]) versus asymptomatic mutation carriers (24·61 centiloids [30·27]; p=0·11) and between symptomatic people with Down syndrome (77·25 centiloids [41·76]) versus symptomatic mutation carriers (69·15 centiloids [51·10]; p=0·34). APOE ɛ4 status and sex had no effect on global amyloid PET deposition. Amyloid deposition was elevated significantly earlier in mutation carriers than in participants with Down syndrome (estimated years to symptom onset -23·0 vs -17·5; p=0·0002). PSEN1 mutations primarily drove this difference. Early amyloid accumulation occurred in striatal and cortical regions for both mutation carriers (n=265) and people with Down syndrome (n=128). Although mutation carriers had widespread amyloid accumulation in all cortical regions, the medial occipital regions were spared in people with Down syndrome. INTERPRETATION: Despite minor differences, amyloid PET changes were similar between people with autosomal dominant Alzheimer's disease versus Down syndrome and strongly supported early amyloid dysregulation in individuals with Down syndrome. Individuals with Down syndrome aged at least 35 years might benefit from early intervention and warrant future inclusion in clinical trials, particularly given the relatively high incidence of Down syndrome. FUNDING: The National Institute on Aging, Riney and Brennan Funds, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the German Center for Neurodegenerative Diseases, and the Japan Agency for Medical Research and Development.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cerebral Cortex , Down Syndrome , Adult , Aged , Humans , Middle Aged , Alzheimer Disease/blood , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides/analysis , Apolipoproteins E/genetics , Biomarkers/analysis , Cross-Sectional Studies , Down Syndrome/blood , Down Syndrome/diagnostic imaging , Down Syndrome/genetics , Positron-Emission Tomography , Cerebral Cortex/chemistry , Cerebral Cortex/diagnostic imaging
13.
Ann Clin Transl Neurol ; 9(11): 1739-1751, 2022 11.
Article in English | MEDLINE | ID: mdl-36183195

ABSTRACT

OBJECTIVES: Concentrations of amyloid-ß peptides (Aß42/Aß40) and neurofilament light (NfL) can be measured in plasma or cerebrospinal fluid (CSF) and are associated with Alzheimer's disease brain pathology and cognitive impairment. This study directly compared plasma and CSF measures of Aß42/Aß40 and NfL as predictors of cognitive decline. METHODS: Participants were 65 years or older and cognitively normal at baseline with at least one follow-up cognitive assessment. Analytes were measured with the following types of assays: plasma Aß42/Aß40, immunoprecipitation-mass spectrometry; plasma NfL, Simoa; CSF Aß42/Aß40, automated immunoassay; CSF NfL plate-based immunoassay. Mixed effects models evaluated the global cognitive composite score over a maximum of 6 years as predicted by the fluid biomarkers. RESULTS: Analyses included 371 cognitively normal participants, aged 72.7 ± 5.2 years (mean ± standard deviation) with an average length of follow-up of 3.9 ± 1.6 years. Standardized concentrations of biomarkers were associated with annualized cognitive change: plasma Aß42/Aß40, 0.014 standard deviations (95% confidence intervals 0.002 to 0.026); CSF Aß42/Aß40, 0.020 (0.008 to 0.032); plasma Nfl, -0.018 (-0.030 to -0.005); and CSF NfL, -0.024 (-0.036 to -0.012). Power analyses estimated that 266 individuals in each treatment arm would be needed to detect a 50% slowing of decline if identified by abnormal plasma measures versus 229 for CSF measures. INTERPRETATION: Both plasma and CSF measures of Aß42/Aß40 and NfL predicted cognitive decline. A clinical trial that enrolled individuals based on abnormal plasma Aß42/Aß40 and NfL levels would require only a marginally larger cohort than if CSF measures were used.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Cognitive Dysfunction/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Alzheimer Disease/diagnosis , Biomarkers , Cohort Studies
14.
Cancer Cell ; 40(8): 850-864.e9, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35868306

ABSTRACT

Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and clinical annotations for a large cohort of AML patients, which facilitated discovery of functional genomic correlates. Here, we present a dataset that has been harmonized with our initial report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort concordance and identify features of drug response. Further, deconvoluting transcriptomic data shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes conditionally affecting other correlates of response. Finally, modeling of clinical outcome reveals a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for young patients. Collectively, this report expands a large functional genomic resource, offers avenues for mechanistic exploration and drug development, and reveals tools for predicting outcome in AML.


Subject(s)
Leukemia, Myeloid, Acute , Cell Differentiation , Cohort Studies , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Receptors, Cell Surface/genetics , Transcriptome
15.
J Alzheimers Dis ; 89(1): 193-207, 2022.
Article in English | MEDLINE | ID: mdl-35871346

ABSTRACT

BACKGROUND: The SOMAscan assay has an advantage over immunoassay-based methods because it measures a large number of proteins in a cost-effective manner. However, the performance of this technology compared to the routinely used immunoassay techniques needs to be evaluated. OBJECTIVE: We performed comparative analyses of SOMAscan and immunoassay-based protein measurements for five cerebrospinal fluid (CSF) proteins associated with Alzheimer's disease (AD) and neurodegeneration: NfL, Neurogranin, sTREM2, VILIP-1, and SNAP-25. METHODS: We compared biomarkers measured in ADNI (N = 689), Knight-ADRC (N = 870), DIAN (N = 115), and Barcelona-1 (N = 92) cohorts. Raw protein values were transformed using z-score in order to combine measures from the different studies. sTREM2 and VILIP-1 had more than one analyte in SOMAscan; all available analytes were evaluated. Pearson's correlation coefficients between SOMAscan and immunoassays were calculated. Receiver operating characteristic curve and area under the curve were used to compare prediction accuracy of these biomarkers between the two platforms. RESULTS: Neurogranin, VILIP-1, and NfL showed high correlation between SOMAscan and immunoassay measures (r > 0.9). sTREM2 had a fair correlation (r > 0.6), whereas SNAP-25 showed weak correlation (r = 0.06). Measures in both platforms provided similar predicted performance for all biomarkers except SNAP-25 and one of the sTREM2 analytes. sTREM2 showed higher AUC for SOMAscan based measures. CONCLUSION: Our data indicate that SOMAscan performs as well as immunoassay approaches for NfL, Neurogranin, VILIP-1, and sTREM2. Our study shows promise for using SOMAscan as an alternative to traditional immunoassay-based measures. Follow-up investigation will be required for SNAP-25 and additional established biomarkers.


Subject(s)
Alzheimer Disease , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans , Immunoassay , Neurogranin/cerebrospinal fluid , ROC Curve , tau Proteins/cerebrospinal fluid
16.
Neurology ; 99(3): e245-e257, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35450967

ABSTRACT

BACKGROUND AND OBJECTIVES: To evaluate whether plasma biomarkers of amyloid (Aß42/Aß40), tau (p-tau181 and p-tau231), and neuroaxonal injury (neurofilament light chain [NfL]) detect brain amyloidosis consistently across racial groups. METHODS: Individuals enrolled in studies of memory and aging who self-identified as African American (AA) were matched 1:1 to self-identified non-Hispanic White (NHW) individuals by age, APOE ε4 carrier status, and cognitive status. Each participant underwent blood and CSF collection, and amyloid PET was performed in 103 participants (68%). Plasma Aß42/Aß40 was measured by a high-performance immunoprecipitation-mass spectrometry assay. Plasma p-tau181, p-tau231, and NfL were measured by Simoa immunoassays. CSF Aß42/Aß40 and amyloid PET status were used as primary and secondary reference standards of brain amyloidosis, respectively. RESULTS: There were 76 matched pairs of AA and NHW participants (n = 152 total). For both AA and NHW groups, the median age was 68.4 years, 42% were APOE ε4 carriers, and 91% were cognitively normal. AA were less likely than NHW participants to have brain amyloidosis by CSF Aß42/Aß40 (22% vs 43% positive; p = 0.003). The receiver operating characteristic area under the curve of CSF Aß42/Aß40 status with the plasma biomarkers was as follows: Aß42/Aß40, 0.86 (95% CI 0.79-0.92); p-tau181, 0.76 (0.68-0.84); p-tau231, 0.69 (0.60-0.78); and NfL, 0.64 (0.55-0.73). In models predicting CSF Aß42/Aß40 status with plasma Aß42/Aß40 that included covariates (age, sex, APOE ε4 carrier status, race, and cognitive status), race did not affect the probability of CSF Aß42/Aß40 positivity. In similar models based on plasma p-tau181, p-tau231, or NfL, AA participants had a lower probability of CSF Aß42/Aß40 positivity (odds ratio 0.31 [95% CI 0.13-0.73], 0.30 [0.13-0.71], and 0.27 [0.12-0.64], respectively). Models of amyloid PET status yielded similar findings. DISCUSSION: Models predicting brain amyloidosis using a high-performance plasma Aß42/Aß40 assay may provide an accurate and consistent measure of brain amyloidosis across AA and NHW groups, but models based on plasma p-tau181, p-tau231, and NfL may perform inconsistently and could result in disproportionate misdiagnosis of AA individuals.


Subject(s)
Alzheimer Disease , Amyloidosis , Aged , Alzheimer Disease/diagnosis , Amyloid , Amyloid beta-Peptides/metabolism , Amyloidosis/diagnosis , Apolipoprotein E4 , Biomarkers , Brain/diagnostic imaging , Humans , Intermediate Filaments , Peptide Fragments/metabolism , Phosphorylation , tau Proteins
17.
Brain Commun ; 4(2): fcac045, 2022.
Article in English | MEDLINE | ID: mdl-35415607

ABSTRACT

Neurofilament light is a well-established marker of both acute and chronic neuronal damage and is increased in multiple neurodegenerative diseases. However, the protein is not well characterized in brain tissue or body fluids, and it is unknown what neurofilament light species are detected by commercial assays and whether additional species exist. We developed an immunoprecipitation-mass spectrometry assay using custom antibodies targeting various neurofilament light domains, including antibodies targeting Coil 1A/1B of the rod domain (HJ30.13), Coil 2B of the rod domain (HJ30.4) and the tail region (HJ30.11). We utilized our assay to characterize neurofilament light in brain tissue and CSF of individuals with Alzheimer's disease dementia and healthy controls. We then validated a quantitative version of our assay and measured neurofilament light concentrations using both our quantitative immunoprecipitation-mass spectrometry assay and the commercially available immunoassay from Uman diagnostics in individuals with and without Alzheimer's disease dementia. Our validation cohort included CSF samples from 30 symptomatic amyloid-positive participants, 16 asymptomatic amyloid-positive participants, 10 symptomatic amyloid-negative participants and 25 amyloid-negative controls. We identified at least three major neurofilament light species in CSF, including N-terminal and C-terminal truncations, and a C-terminal fragment containing the tail domain. No full-length neurofilament light was identified in CSF. This contrasts with brain tissue, which contained mostly full-length neurofilament and a C-terminal tail domain fragment. We observed an increase in neurofilament light concentrations in individuals with Alzheimer's disease compared with healthy controls, with larger differences for some neurofilament light species than for others. The largest differences were observed for neurofilament light fragments including NfL165 (in Coil 1B), NfL324 (in Coil 2B) and NfL530 (in the C-terminal tail domain). The Uman immunoassay correlated most with NfL324. This study provides a comprehensive evaluation of neurofilament light in brain and CSF and enables future investigations of neurofilament light biology and utility as a biomarker.

18.
Lancet Neurol ; 20(8): 615-626, 2021 08.
Article in English | MEDLINE | ID: mdl-34302786

ABSTRACT

BACKGROUND: Due to trisomy of chromosome 21 and the resultant extra copy of the amyloid precursor protein gene, nearly all adults with Down syndrome develop Alzheimer's disease pathology by the age of 40 years and are at high risk for dementia given their increased life expectancy compared with adults with Down syndrome in the past. We aimed to compare CSF biomarker patterns in Down syndrome with those of carriers of autosomal dominant Alzheimer's disease mutations to enhance our understanding of disease mechanisms in these two genetic groups at high risk for Alzheimer's disease. METHODS: We did a cross-sectional study using data from adults enrolled in the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study, a multisite longitudinal study of Alzheimer's disease in Down syndrome, as well as a cohort of carriers of autosomal dominant Alzheimer's disease mutations and non-carrier sibling controls enrolled in the Dominantly Inherited Alzheimer Network (DIAN) study. For ABC-DS, participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of Jan 31, 2019, were included in the analysis. DIAN participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of June 30, 2018, were evaluated as comparator groups. CSF samples obtained from adults with Down syndrome, similarly aged carriers of autosomal dominant Alzheimer's disease mutations, and non-carrier siblings (aged 30-61 years) were analysed for markers of amyloid ß (Aß1-40, Aß1-42); tau phosphorylated at threonine 181-related processes; neuronal, axonal, or synaptic injury (total tau, visinin-like protein 1, neurofilament light chain [NfL], synaptosomal-associated protein 25); and astrogliosis and neuroinflammation (chitinase-3-like protein 1 [YKL-40]) via immunoassay. Biomarker concentrations were compared as a function of dementia status (asymptomatic or symptomatic), and linear regression was used to evaluate and compare the relationship between biomarker concentrations and age among groups. FINDINGS: We assessed CSF samples from 341 individuals (178 [52%] women, 163 [48%] men, aged 30-61 years). Participants were adults with Down syndrome (n=41), similarly aged carriers of autosomal dominant Alzheimer's disease mutations (n=192), and non-carrier siblings (n=108). Individuals with Down syndrome had patterns of Alzheimer's disease-related CSF biomarkers remarkably similar to carriers of autosomal dominant Alzheimer's disease mutations, including reductions (all p<0·0080) in Aß1-42 to Aß1-40 ratio and increases in markers of phosphorylated tau-related processes; neuronal, axonal, and synaptic injury (p<0·080); and astrogliosis and neuroinflammation, with greater degrees of abnormality in individuals with dementia. Differences included overall higher concentrations of Aß and YKL-40 (both p<0·0008) in Down syndrome and potential elevations in CSF tau (p<0·010) and NfL (p<0·0001) in the asymptomatic stage (ie, no dementia symptoms). FUNDING: National Institute on Aging, Eunice Kennedy Shriver National Institute of Child Health and Human Development, German Center for Neurodegenerative Diseases, and Japan Agency for Medical Research and Development.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Down Syndrome/cerebrospinal fluid , Adult , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Down Syndrome/diagnosis , Down Syndrome/genetics , Encephalitis/cerebrospinal fluid , Female , Genotype , Gliosis/cerebrospinal fluid , Heterozygote , Humans , Longitudinal Studies , Male , Middle Aged , Neurofilament Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
19.
Neurology ; 96(20): e2546-e2557, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33795390

ABSTRACT

OBJECTIVE: To determine whether neuronal and neuroaxonal injury, neuroinflammation, and synaptic dysfunction associate with clinical course and outcomes in antibody-mediated encephalitis (AME), we measured biomarkers of these processes in CSF from patients presenting with AME and cognitively normal individuals. METHODS: Biomarkers of neuronal (total tau, VILIP-1) and neuroaxonal damage (neurofilament light chain [NfL]), inflammation (YKL-40), and synaptic function (neurogranin, SNAP-25) were measured in CSF obtained from 45 patients at the time of diagnosis of NMDA receptor (n = 34) or LGI1/CASPR2 (n = 11) AME and 39 age- and sex-similar cognitively normal individuals. The association between biomarkers and modified Rankin Scale (mRS) scores were evaluated in a subset (n = 20) of longitudinally followed patients. RESULTS: Biomarkers of neuroaxonal injury (NfL) and neuroinflammation (YKL-40) were elevated in AME cases at presentation, whereas markers of neuronal injury and synaptic function were stable (total tau) or decreased (VILIP-1, SNAP-25, neurogranin). The log-transformed ratio of YKL-40/SNAP-25 optimally discriminated patients from cognitively normal individuals (area under the receiver operating characteristic curve 0.99; 95% confidence interval 0.97, >0.99). Younger age (ρ = -0.56; p = 0.01), lower VILIP-1 (ρ = -0.60; p < 0.01) and SNAP-25 (ρ = -0.54; p = 0.01), and higher log10(YKL-40/SNAP-25) (ρ = 0.48; p = 0.04) associated with greater disease severity (higher mRS score) in prospectively followed patients. Higher YKL-40 (ρ = 0.60; p = 0.02) and neurogranin (ρ = 0.55; p = 0.03) at presentation were associated with higher mRS scores 12 months following hospital discharge. CONCLUSIONS: CSF biomarkers suggest that neuronal integrity is acutely maintained in AME, despite neuroaxonal compromise. Low levels of biomarkers of synaptic function may reflect antibody-mediated internalization of cell surface receptors and may represent an acute correlate of antibody-mediated synaptic dysfunction, with the potential to inform disease severity and outcomes.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/cerebrospinal fluid , Chitinase-3-Like Protein 1/cerebrospinal fluid , Neurocalcin/cerebrospinal fluid , Neurofilament Proteins/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Adolescent , Adult , Aged , Aged, 80 and over , Autoantibodies/immunology , Autoimmune Diseases of the Nervous System/cerebrospinal fluid , Autoimmune Diseases of the Nervous System/immunology , Biomarkers/cerebrospinal fluid , Case-Control Studies , Child , Child, Preschool , Encephalitis/cerebrospinal fluid , Encephalitis/immunology , Female , Humans , Intracellular Signaling Peptides and Proteins/immunology , Male , Membrane Proteins/immunology , Middle Aged , Nerve Tissue Proteins/immunology , Neurogranin/cerebrospinal fluid , Synaptosomal-Associated Protein 25/cerebrospinal fluid , Young Adult
20.
Neurol Genet ; 7(2): e571, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33884297

ABSTRACT

OBJECTIVE: To evaluate for racial differences in triggering receptor expressed on myeloid cells 2 (TREM2), a key immune mediator in Alzheimer disease, the levels of CSF soluble TREM2 (sTREM2), and the frequency of associated genetic variants were compared in groups of individuals who self-reported their race as African American (AA) or non-Hispanic White (NHW). METHODS: Community-dwelling older research participants underwent measurement of CSF sTREM2 concentrations and genetic analyses. RESULTS: The primary cohort included 91 AAs and 868 NHWs. CSF sTREM2 levels were lower in the AA compared with the NHW group (1,336 ± 470 vs 1,856 ± 624 pg/mL, p < 0.0001). AAs were more likely to carry TREM2 coding variants (15% vs 3%, p < 0.0001), which were associated with lower CSF sTREM2. AAs were less likely to carry the rs1582763 minor allele (8% vs 37%, p < 0.0001), located near MS4A4A, which was associated with higher CSF sTREM2. These findings were replicated in an independent cohort of 23 AAs and 917 NHWs: CSF sTREM2 levels were lower in the AA group (p = 0.03), AAs were more likely to carry coding TREM2 variants (22% vs 4%, p = 0.002), and AAs were less likely to carry the rs1582763 minor allele (16% vs 37%, p = 0.003). CONCLUSIONS: On average, AAs had lower CSF sTREM2 levels compared with NHWs, potentially because AAs are more likely to carry genetic variants associated with lower CSF sTREM2 levels. Importantly, CSF sTREM2 reflects TREM2-mediated microglial activity, a critical step in the immune response to amyloid plaques. These findings suggest that race may be associated with risk for genetic variants that influence Alzheimer disease-related inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...