Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 136(10): 3736-9, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24575841

ABSTRACT

A near-IR-emitting conjugated oligoelectrolyte (COE), ZCOE, was synthesized, and its photophysical features were characterized. The biological affinity of ZCOE is compared to that of an established lipid-membrane-intercalating COE, DSSN+, which has blue-shifted optical properties making it compatible for tracking preferential sites of accumulation. ZCOE exhibits diffuse staining of E. coli cells, whereas it displays internal staining of select yeast cells which also show propidium iodide staining, indicating ZCOE is a "dead" stain for this organism. Staining of mammalian cells reveals complete internalization of ZCOE through endocytosis, as supported by colocalization with LysoTracker and late endosome markers. In all cases DSSN+ persists in the outer membranes, most likely due to its chemical structure more closely resembling a lipid bilayer.


Subject(s)
Electrolytes/analysis , Optical Imaging/methods , Staining and Labeling/methods , Animals , COS Cells/cytology , Cell Survival , Chlorocebus aethiops , Electrolytes/chemical synthesis , Electrolytes/metabolism , Endocytosis , Escherichia coli/cytology , Microscopy, Confocal/methods , Yeasts/cytology
2.
Adv Mater ; 26(5): 724-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24493053

ABSTRACT

Through simple addition of a Lewis acid to a conjugated polymer bearing a Lewis basic heteroatom, the hole transport of the polymer can be effectively p-doped resulting in a two-orders increase in hole mobility. The temperature dependent hole transport of a variety of Lewis acid concentrations are explored.

3.
Acc Chem Res ; 47(1): 257-70, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-23984626

ABSTRACT

Organic semiconductors incorporated into solar cells using a bulk heterojunction (BHJ) construction show promise as a cleaner answer to increasing energy needs throughout the world. Organic solar cells based on the BHJ architecture have steadily increased in their device performance over the past two decades, with power conversion efficiencies reaching 10%. Much of this success has come with conjugated polymer/fullerene combinations, where optimized polymer design strategies, synthetic protocols, device fabrication procedures, and characterization methods have provided significant advancements in the technology. More recently, chemists have been paying particular attention to well-defined molecular donor systems due to their ease of functionalization, amenability to standard organic purification and characterization methods, and reduced batch-to-batch variability compared to polymer counterparts. There are several critical properties for efficient small molecule donors. First, broad optical absorption needs to extend towards the near-IR region to achieve spectral overlap with the solar spectrum. Second, the low lying highest occupied molecular orbital (HOMO) energy levels need to be between -5.2 and -5.5 eV to ensure acceptable device open circuit voltages. Third, the structures need to be relatively planar to ensure close intermolecular contacts and high charge carrier mobilities. And last, the small molecule donors need to be sufficiently soluble in organic solvents (≥10 mg/mL) to facilitate solution deposition of thin films of appropriate uniformity and thickness. Ideally, these molecules should be constructed from cost-effective, sustainable building blocks using established, high yielding reactions in as few steps as possible. The structures should also be easy to functionalize to maximize tunability for desired properties. In this Account, we present a chronological description of our thought process and design strategies used in the development of highly efficient molecular donors that achieve power conversion efficiencies greater than 7%. The molecules are based on a modular D(1)-A-D(2)-A-D(1) architecture, where A is an asymmetric electron deficient heterocycle, which allowed us to quickly access a library of compounds and develop structure-property-performance relationships. Modifications to the D1 and D2 units enable spectral coverage throughout the entire visible region and control of HOMO energy levels, while adjustments to the pendant alkyl substituents dictate molecular solubility, thermal transition temperatures, and solid-state organizational tendencies. Additionally, we discuss regiochemical considerations that highlight how individual atom placements can significantly influence molecular and subsequently device characteristics. Our results demonstrate the utility of this architecture for generating promising materials to be integrated into organic photovoltaic devices, call attention to areas for improvement, and provide guiding principles to sustain the steady increases necessary to move this technology forward.

4.
Angew Chem Int Ed Engl ; 52(49): 12874-8, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24281883

ABSTRACT

PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements.

5.
Adv Mater ; 25(32): 4403-6, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23788212

ABSTRACT

By combining the molecular donor p-DTS(FBTTh2 )2 with a readily produced perylene diimide acceptor we are able to achieve a power conversion efficiency of 3.0%, making this one of the most efficient non-fullerene organic solar cells to date. The reduced power conversion efficiency of the present system compared to the use of phenyl-C71 -butyric acid methyl ester as an electron acceptor is shown to primarily be related to a significant reduction in the internal quantum efficiency. These results indicate the potential of small-molecule:non-fullerene bulk-heterojunction organic photovoltaics.

6.
J Am Chem Soc ; 135(11): 4163-6, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23458636

ABSTRACT

We report the design, synthesis, and optical and electronic properties of two novel narrow band gap conjugated polyelectrolytes (NBGCPEs) based on a poly[2,6-(4,4-bis-alkyl-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] donor/acceptor backbone. Comparison with the properties of the neutral precursor material shows that the ionic component in these cationic NBGCPEs leads to a red-shift in the absorption spectra and to a modification of the polymer electronic energy levels. Both the HOMO and the LUMO are lowered in energy, with the net effect being dependent on the choice of counterion, i.e. bromide vs tetrakis(1-imidazolyl)borate. Moreover, we unexpectedly find n-type transport in thin-film transistors, as opposed to the widely studied p-type transport in neutral systems with isoelectronic backbones. From these observations we conclude that introduction of ionic functionalities adjacent to semiconducting polymers that exhibit charge-transfer excitations offers unique opportunities for materials design.

7.
Nat Chem ; 4(9): 699-704, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22914189

ABSTRACT

Organic semiconducting materials based on polymers and molecular systems containing an electronically delocalized structure are the basis of emerging optoelectronic technologies such as plastic solar cells and flexible transistors. For isolated molecules, guidelines exist that rely on the molecular formula to tailor the frontier (highest occupied or lowest unoccupied) molecular orbital energy levels and optical absorption profiles. Much less control can be achieved over relevant properties, however, as one makes the transition to the ensemble behaviour characteristic of the solid state. Polymeric materials are also challenging owing to the statistical description of the average number of repeat units. Here we draw attention to the limitations of molecular formulae as predictive tools for achieving properties relevant to device performances. Illustrative examples highlight the relevance of organization across multiple length scales, and how device performances--although relevant for practical applications--poorly reflect the success of molecular design.


Subject(s)
Organic Chemicals/chemistry , Polymers/chemistry , Semiconductors , Chemistry, Organic , Models, Molecular , Molecular Weight
9.
J Am Chem Soc ; 134(8): 3766-79, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22283693

ABSTRACT

π-Conjugated materials containing pyridal[2,1,3]thiadiazole (PT) units have recently achieved record power conversion efficiencies of 6.7% in solution-processed, molecular bulk-heterojunction (BHJ) organic photovoltaics. Recognizing the importance of this new class of molecular systems and with the aim of establishing a more concrete path forward to predict improvements in desirable solid-state properties, we set out to systematically alter the molecular framework and evaluate structure-property relationships. Thus, the synthesis and properties of 13 structurally related D(1)-PT-D(2)-PT-D(1) compounds, where D represents a relatively electron-rich aromatic segment compared to PT, are provided. Physical properties were examined using a combination of absorption spectroscopy, cyclic voltammetry, thermal gravimetric analysis, differential scanning calorimetry, and solubility analysis. Changes to end-capping D(1) units allowed for fine control over electronic energy levels both in solution and in the bulk. Substitution of different alkyl chains on D(2) gives rise to controllable melting and crystallization temperatures and tailored solubility. Alterations to the core donor D(2) lead to readily identifiable changes in all properties studied. Finally, the regiochemistry of the pyridal N-atom in the PT heterocycle was investigated. The tailoring of structures via subtle structural modifications in the presented molecular series highlights the simplicity of accessing this chromophore architecture. Examination of the resulting materials properties relevant for device fabrication sets forth which can be readily predicted by consideration of molecular structure and which lack a systematic understanding. Guidelines can be proposed for the design of new molecular frameworks with the possibility of outperforming the current state of the art OPV performance.


Subject(s)
Thiadiazoles/chemistry , Electric Power Supplies , Molecular Structure , Thiadiazoles/chemical synthesis
11.
Anal Chem ; 81(4): 1482-7, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19143495

ABSTRACT

A novel ion mobility spectrometry instrument incorporating a cyclotron geometry drift tube is presented. The drift tube consists of eight regions, four curved drift tubes and four ion funnels. Packets of ions are propagated around the drift tube by changing the drift field at a frequency that is resonant with the ion's drift time through each region. The approach trims each packet of ions as it leaves and enters each new region. An electrostatic gate allows ions to be kept in the drift tube for numerous cycles, increasing the ability to resolve specified ions. We demonstrate the approach by isolating the [M + 2H](2+) or [M + 3H](3+) charge state of substance P as well as individual trisaccharide isomers from a mixture of melezitose and raffinose. Resolving powers in excess of 300 are obtainable with this approach.


Subject(s)
Cyclotrons , Motion , Spectrum Analysis/methods , Isomerism , Raffinose/chemistry , Raffinose/isolation & purification , Time Factors , Trisaccharides/chemistry , Trisaccharides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...