Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 37(2): 586-91, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18419932

ABSTRACT

Greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), was first discovered damaging seashore paspalum (Paspalum vaginatum Swartz) turfgrass in November 2003 at Belle Glade, FL. Inquiries to several golf courses with seashore paspalum turf across southern Florida indicated infestation was wide spread by April 2004. Damage symptoms progress from water soaked lesions surrounding feeding sites within 24 h to chlorosis and necrosis of leaf tips within 96 h. Problems caused by greenbug feeding were initially misdiagnosed as fertilizer, disease, other insects, or water management problems because aphids were not previously found on warm season turfgrasses. Greenbug development and fecundity studies were conducted on six seashore paspalum varieties: 'Aloha,' 'SeaDwarf,' 'SeaGreen,' 'SeaIsle,' 'SeaWay,' and 'SeaWolf.' Greenbug did not survive on 'SeaWolf.' Development rates (mean +/- SEM) ranged from 7.6 +/- 0.2 to 8.2 +/- 0.2 d on the remaining varieties. Greenbug longevity and fecundity on 'Aloha' were significantly less than on the other varieties. The estimated intrinsic rate of natural increase (r(m)) for greenbug ranged from 0.24 to 0.26 across tested varieties. Values for net reproductive rate (R(o)) ranged from 12.3 on 'Aloha' to 40.4 on 'SeaWay.' In feeding trials on indicator plants, the Florida isolate of greenbug exhibited a unique biotypic profile most commonly found on noncultivated grass hosts. It was virulent on the wheat variety GRS1201 that is resistant to the principal agricultural biotypes attacking small grains and to all currently available resistant sorghum varieties.


Subject(s)
Aphids/classification , Aphids/physiology , Paspalum/parasitology , Aging , Animals , Ecosystem , Female , Reproduction/physiology
2.
J Econ Entomol ; 100(6): 1887-95, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18232407

ABSTRACT

Field trials using Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and Euxesta stigmatias Loew (Diptera: Ulidiidae) were conducted to evaluate resistance and potential damage interactions between these two primary corn, Zea mays L., pests against Lepidoptera-resistant corn varieties derived from both endogenous and exogenous sources. The endogenous source of resistance was maysin, a C-glycosyl flavone produced in high concentrations in varieties 'Zapalote Chico 2451' and 'Zapalote Chico sh2'. The exogenous resistance source was the Bacillus thuringiensis (Bt)11 gene that expresses Cry1A(b) insecticidal protein found in 'Attribute GSS-0966'. Damage by the two pests was compared among these resistant varieties and the susceptible 'Primetime'. Single-species tests determined that the Zapalote Chico varieties and GSS-0966 effectively reduced S. frugiperda larval damage compared with Primetime. E. stigmatias larval damage was less in the Zapalote Chico varieties than the other varieties in single-species tests. E. stigmatias damage was greater on S. frugiperda-infested versus S. frugiperda-excluded ears. Ears with S. frugiperda damage to husk, silk and kernels had greater E. stigmatias damage than ears with less S. frugiperda damage. Reversed phase high-performance liquid chromatography analysis of nonpollinated corn silk collected from field plots determined that isoorientin, maysin, and apimaysin plus 3'-methoxymaysin concentrations followed the order Zapalote Chico sh2 > Zapalote Chico 2451 > Attribute GSS-0966 = Primetime. Chlorogenic acid concentrations were greatest in Zapalote Chico 2451. The two high maysin Zapalote Chico varieties did as well against fall armyworm as the Bt-enhanced GSS-0966, and they outperformed GSS-0966 against E. stigmatias.


Subject(s)
Diptera/physiology , Moths/physiology , Zea mays/genetics , Zea mays/parasitology , Animals , Crosses, Genetic , Genetic Predisposition to Disease , Plant Diseases/genetics , Plant Diseases/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...