Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int J Biol Macromol ; 265(Pt 1): 130696, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458288

ABSTRACT

There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.


Subject(s)
Hydrogels , Nanoparticles , Nitrites , Transition Elements , Mice , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Gelatin/chemistry , Printing, Three-Dimensional , Glycosaminoglycans , Muscle, Skeletal , Tissue Scaffolds/chemistry , Tissue Engineering/methods
2.
J Med Virol ; 96(1): e29386, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235919

ABSTRACT

Human papillomavirus (HPV) is a major causative factor of head and neck squamous cell carcinoma (HNSCC), and the incidence of HPV- associated HNSCC is increasing. The role of tumor microenvironment in viral infection and metastasis needs to be explored further. We studied the molecular characteristics of primary tumors (PTs) and lymph node metastatic tumors (LNMTs) by stratifying them based on their HPV status. Eight samples for single-cell RNA profiling and six samples for spatial transcriptomics (ST), composed of matched primary tumors (PT) and lymph node metastases (LNMT), were collected from both HPV- negative (HPV- ) and HPV-positive (HPV+ ) patients. Using the 10x Genomics Visium platform, integrative analyses with single-cell RNA sequencing were performed. Intracellular and intercellular alterations were analyzed, and the findings were confirmed using experimental validation and publicly available data set. The HPV+ tissues were composed of a substantial amount of lymphoid cells regardless of the presence or absence of metastasis, whereas the HPV- tissue exhibited remarkable changes in the number of macrophages and plasma cells, particularly in the LNMT. From both single-cell RNA and ST data set, we discovered a central gene, pyruvate kinase muscle isoform 1/2 (PKM2), which is closely associated with the stemness of cancer stem cell-like populations in LNMT of HPV- tissue. The consistent expression was observed in HPV- HNSCC cell line and the knockdown of PKM2 weakened spheroid formation ability. Furthermore, we found an ectopic lymphoid structure morphology and clinical effects of the structure in ST slide of the HPV+ patients and verified their presence in tumor tissue using immunohistochemistry. Finally, the ephrin-A (EPHA2) pathway was detected as important signals in angiogenesis for HPV- patients from single-cell RNA and ST profiles, and knockdown of EPHA2 declined the cell migration. Our study described the distinct cellular composition and molecular alterations in primary and metastatic sites in HNSCC patients based on their HPV status. These results provide insights into HNSCC biology in the context of HPV infection and its potential clinical implications.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/pathology , Human Papillomavirus Viruses , Papillomaviridae/genetics , Head and Neck Neoplasms/genetics , Gene Expression Profiling/methods , RNA , Tumor Microenvironment/genetics
3.
Nanomicro Lett ; 16(1): 73, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175358

ABSTRACT

Current therapeutic approaches for volumetric muscle loss (VML) face challenges due to limited graft availability and insufficient bioactivities. To overcome these limitations, tissue-engineered scaffolds have emerged as a promising alternative. In this study, we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone) integrated with collagen and Ti3C2Tx MXene nanoparticles (NPs) (PCM matrices), and explored their myogenic potential for skeletal muscle tissue regeneration. The PCM matrices demonstrated favorable physicochemical properties, including structural uniformity, alignment, microporosity, and hydrophilicity. In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts. Moreover, in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury. Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices, leading to elevated intracellular Ca2+ levels in myoblasts through the activation of inducible nitric oxide synthase (iNOS) and serum/glucocorticoid regulated kinase 1 (SGK1), ultimately promoting myogenic differentiation via the mTOR-AKT pathway. Additionally, upregulated iNOS and increased NO- contributed to myoblast proliferation and fiber fusion, thereby facilitating overall myoblast maturation. These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.

4.
Nanoscale ; 14(45): 17053-17064, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36367284

ABSTRACT

Despite advances in diagnostic and therapeutic methods, the prognosis of patients with hepatocellular carcinoma (HCC) remains poor due to the delay in diagnosis. Herein, we aimed to discover a highly sensitive and specific biomarker for HCC based on genomic big data analysis and create an HCC-targeted imaging probe using carbon nanodots (CNDs) as contrast agents. In genomic analysis, we selected glucose transporter 2 (GLUT2) as a potential imaging target for HCC. We confirmed the target suitability by immunohisto-chemistry tests of 339 patient samples, where 81.1% of the patients exhibited underexpression of GLUT2, i.e., higher GLUT2 intensity in non-tumor tissues than in tumor tissues. To visualize GLUT2, we conjugated CNDs with glucosamine (GLN) as a targeting ligand to yield glucosamine-labeled CNDs (GLN-CNDs). A series of in vitro and in vivo experiments were conducted on GLUT2-modified HepG2 cells to confirm the specificity of the GLN-CNDs. Since the GLUT2 expression is higher in hepatocytes than in HCC cells, the GLUT2-targeted contrast agent is highly attached to normal cells. However, it is possible to produce images in the same form as the images obtained with a cancer cell-targeted contrast agent by inverting color scaling. Our results indicate that GLUT2 is a promising target for HCC and that GLN-CNDs may potentially be used as targeted imaging probes for diagnosing HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carbon , Carcinoma, Hepatocellular/diagnostic imaging , Contrast Media , Liver Neoplasms/diagnostic imaging , Glucosamine
5.
Int J Biol Sci ; 18(13): 5154-5167, 2022.
Article in English | MEDLINE | ID: mdl-35982907

ABSTRACT

Vascular smooth muscle cell (VSMC) proliferation is a hallmark of neointimal hyperplasia (NIH) in atherosclerosis and restenosis post-balloon angioplasty and stent insertion. Although numerous cytotoxic and cytostatic therapeutics have been developed to reduce NIH, it is improbable that a multifactorial disease can be successfully treated by focusing on a preconceived hypothesis. We, therefore, aimed to identify key molecules involved in NIH via a hypothesis-free approach. We analyzed four datasets (GSE28829, GSE43292, GSE100927, and GSE120521), evaluated differentially expressed genes (DEGs) in wire-injured femoral arteries of mice, and determined their association with VSMC proliferation in vitro. Moreover, we performed RNA sequencing on platelet-derived growth factor (PDGF)-stimulated human VSMCs (hVSMCs) post-phosphoenolpyruvate carboxykinase 2 (PCK2) knockdown and investigated pathways associated with PCK2. Finally, we assessed NIH formation in Pck2 knockout (KO) mice by wire injury and identified PCK2 expression in human femoral artery atheroma. Among six DEGs, only PCK2 and RGS1 showed identical expression patterns between wire-injured femoral arteries of mice and gene expression datasets. PDGF-induced VSMC proliferation was attenuated when hVSMCs were transfected with PCK2 siRNA. RNA sequencing of PCK2 siRNA-treated hVSMCs revealed the involvement of the Akt-FoxO-PCK2 pathway in VSMC proliferation via Akt2, Akt3, FoxO1, and FoxO3. Additionally, NIH was attenuated in the wire-injured femoral artery of Pck2-KO mice and PCK2 was expressed in human femoral atheroma. PCK2 regulates VSMC proliferation in response to vascular injury via the Akt-FoxO-PCK2 pathway. Targeting PCK2, a downstream signaling mediator of VSMC proliferation, may be a novel therapeutic approach to modulate VSMC proliferation in atherosclerosis.


Subject(s)
Atherosclerosis , Phosphoenolpyruvate Carboxykinase (ATP) , Plaque, Atherosclerotic , Animals , Atherosclerosis/metabolism , Cell Movement , Cell Proliferation/genetics , Cells, Cultured , Disease Models, Animal , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/genetics , Neointima/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/metabolism
6.
Cancer Cell Int ; 22(1): 185, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35550582

ABSTRACT

BACKGROUND: Papillary thyroid carcinoma (PTC), the most common endocrine cancer, accounts for 80-85% of all malignant thyroid tumors. This study focused on identifying targets that affect the multifocality of PTC. In a previous study, we determined 158 mRNAs related to multifocality in BRAF-mutated PTC using The Cancer Genome Atlas. METHODS: We used multi-omics data (miRNAs and mRNAs) to identify the regulatory mechanisms of the investigated mRNAs. miRNA inhibitors were used to determine the relationship between mRNAs and miRNAs. We analyzed the target protein levels in patient sera using ELISA and immunohistochemical staining of patients' tissues. RESULTS: We identified 44 miRNAs that showed a negative correlation with mRNA expression. Using in vitro experiments, we identified four miRNAs that inhibit TEK and/or AXIN2 among the target mRNAs. We also showed that the downregulation of TEK and AXIN2 decreased the proliferation and migration of BRAF ( +) PTC cells. To evaluate the diagnostic ability of multifocal PTC, we examined serum TEK or AXIN2 in unifocal and multifocal PTC patients using ELISA, and showed that the serum TEK in multifocal PTC patients was higher than that in the unifocal PTC patients. The immunohistochemical study showed higher TEK and AXIN2 expression in multifocal PTC than unifocal PTC. CONCLUSIONS: Both TEK and AXIN2 play a potential role in the multifocality of PTC, and serum TEK may be a diagnostic marker for multifocal PTC.

7.
Front Genet ; 12: 743786, 2021.
Article in English | MEDLINE | ID: mdl-34646310

ABSTRACT

Glioma is the most common primary malignant tumor that occurs in the central nervous system. Gliomas are subdivided according to a combination of microscopic morphological, molecular, and genetic factors. Glioblastoma (GBM) is the most aggressive malignant tumor; however, efficient therapies or specific target molecules for GBM have not been developed. We accessed RNA-seq and clinical data from The Cancer Genome Atlas, the Chinese Glioma Genome Atlas, and the GSE16011 dataset, and identified differentially expressed genes (DEGs) that were common to both GBM and lower-grade glioma (LGG) in three independent cohorts. The biological functions of common DEGs were examined using NetworkAnalyst. To evaluate the prognostic performance of common DEGs, we performed Kaplan-Meier and Cox regression analyses. We investigated the function of SOCS3 in the central nervous system using three GBM cell lines as well as zebrafish embryos. There were 168 upregulated genes and 50 downregulated genes that were commom to both GBM and LGG. Through survival analyses, we found that SOCS3 was the only prognostic gene in all cohorts. Inhibition of SOCS3 using siRNA decreased the proliferation of GBM cell lines. We also found that the zebrafish ortholog, socs3b, was associated with brain development through the regulation of cell proliferation in neuronal tissue. While additional mechanistic studies are necessary, our results suggest that SOCS3 is an important biomarker for glioma and that SOCS3 is related to the proliferation of neuronal tissue.

8.
Front Endocrinol (Lausanne) ; 12: 724278, 2021.
Article in English | MEDLINE | ID: mdl-35145474

ABSTRACT

Introduction: It is well known that the presence of diabetes significantly affects the progression of periodontitis and that periodontitis has negative effects on diabetes and diabetes-related complications. Although this two-way relationship between type 2 diabetes and periodontitis could be understood through experimental and clinical studies, information on common genetic factors would be more useful for the understanding of both diseases and the development of treatment strategies. Materials and Methods: Gene expression data for periodontitis and type 2 diabetes were obtained from the Gene Expression Omnibus database. After preprocessing of data to reduce heterogeneity, differentially expressed genes (DEGs) between disease and normal tissue were identified using a linear regression model package. Gene ontology and Kyoto encyclopedia of genes and genome pathway enrichment analyses were conducted using R package 'vsn'. A protein-protein interaction network was constructed using the search tool for the retrieval of the interacting genes database. We used molecular complex detection for optimal module selection. CytoHubba was used to identify the highest linkage hub gene in the network. Results: We identified 152 commonly DEGs, including 125 upregulated and 27 downregulated genes. Through common DEGs, we constructed a protein-protein interaction and identified highly connected hub genes. The hub genes were up-regulated in both diseases and were most significantly enriched in the Fc gamma R-mediated phagocytosis pathway. Discussion: We have identified three up-regulated genes involved in Fc gamma receptor-mediated phagocytosis, and these genes could be potential therapeutic targets in patients with periodontitis and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Periodontitis/genetics , Adult , Aged , Computational Biology , Databases, Genetic , Down-Regulation , Female , Humans , Linear Models , Male , Middle Aged , Phagocytosis/genetics , Protein Interaction Maps , Receptors, IgG , Transcriptome , Up-Regulation
9.
Biosci Rep ; 41(1)2021 01 29.
Article in English | MEDLINE | ID: mdl-33245093

ABSTRACT

Abdominal aortic aneurysm (AAA), when ruptured, results in high mortality. The identification of molecular pathways involved in AAA progression is required to improve AAA prognosis. The aim of the present study was to assess the key genes for the progression of AAA and their functional role. Genomic and clinical data of three independent cohorts were downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (GSE57691, GSE7084, and GSE98278). To develop AAA diagnosis and progression-related differentially expressed genes (DEGs), we used a significance analysis of microarray (SAM). Spearman correlation test and gene set analysis were performed to identify potential enriched pathways for DEGs. Only the Frizzled-related protein (FRZB) gene and chromosome 1 open reading frame 24 (C1orf24) exhibited significant down-regulation in all analyses. With FRZB, the pathways were associated with RHO GTPase and elastin fiber formation. With C1orf24, the pathways were elastic fiber formation, extracellular matrix organization, and cell-cell communication. Since only FRZB was evolutionally conserved in the vertebrates, function of FRZB was validated using zebrafish embryos. Knockdown of frzb remarkably reduced vascular integrity in zebrafish embryos. We believe that FRZB is a key gene involved in AAA initiation and progression affecting vascular integrity.


Subject(s)
Aortic Aneurysm, Abdominal/genetics , Blood Vessels/pathology , Intracellular Signaling Peptides and Proteins/genetics , Aged , Animals , Aortic Aneurysm, Abdominal/pathology , Cohort Studies , Disease Progression , Female , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Zebrafish/embryology
10.
J Intensive Care ; 8(1): 89, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33292607

ABSTRACT

BACKGROUND: Ginsenosides have antioxidant and anti-inflammatory features. This study aimed to evaluate the biologic effects of ginsenoside Rb2 pretreatment on ventilator-induced lung injury (VILI) in rats. METHODS: Rats were divided into four groups with 12 rats per group: control; low tidal volume (TV), TV of 6 mL/kg, VILI, TV of 20 mL/kg, positive end-expiratory pressure of 5 cm H2O, and respiratory rate of 60 breaths per minute for 3 h at an inspiratory oxygen fraction of 0.21; and ginsenosides, treated the same as the VILI group but with 20 mg/kg intraperitoneal ginsenoside pretreatment. Morphology was observed with a microscope to confirm the VILI model. Wet-to-dry weight ratios, protein concentrations, and pro-inflammatory cytokines in the bronchoalveolar lavage fluid were measured. RNA sequencing of the lung tissues was conducted to analyze gene expression. RESULTS: High TV histologically induced VILI with alveolar edema and infiltration of inflammatory cells. Ginsenosides pretreatment significantly reduced the histologic lung injury score compared to the VILI group. Wet-to-dry weight ratios, malondialdehyde, and TNF-α in bronchoalveolar lavage fluid were significantly higher in the VILI group and ginsenoside pretreatment mitigated these effects. In the immunohistochemistry assay, ginsenoside pretreatment attenuated the TNF-α upregulation induced by VILI. We identified 823 genes differentially presented in the VILI group compared to the control group. Of the 823 genes, only 13 genes (Arrdc2, Cygb, Exnef, Lcn2, Mroh7, Nsf, Rexo2, Srp9, Tead3, Ephb6, Mvd, Sytl4, and Ube2l6) recovered to control levels in the ginsenoside group. CONCLUSIONS: Ginsenosides inhibited the inflammatory and oxidative stress response in VILI. Further studies are required on the 13 genes, including LCN2.

11.
Anticancer Res ; 40(10): 5601-5609, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32988884

ABSTRACT

BACKGROUND/AIM: Since pathways involving LRRC17 are related to the survival of patients with various cancers, we analyzed LRRC17 as a prognostic gene in serous ovarian cancer. MATERIALS AND METHODS: Data were collected from Gene Expression Omnibus (GSE9891, GSE13876, and GSE26712) and The Cancer Genome Atlas (TCGA). We performed survival analyses using C statistics, area under the curve, survival plot with optimal cutoff level, and cox proportional regression. Zebrafish embryos were used as an in vivo model. RESULTS: The prognosis of patients with high LRRC17 expression was poorer than that of patients with low LRRC17 expression. Multivariate regression analysis showed that LRRC17 expression, age, and stage were independently related with survival. Knockdown of lrrc17 reduced survival rate and delayed development in zebrafish embryos. We also found that lrrc17 is important for cell viability by protecting from p53-dependent apoptosis. CONCLUSION: LRRC17 could be a prognostic gene in ovarian cancer as it regulates cancer cell viability through the p53 pathway.


Subject(s)
Biomarkers, Tumor/genetics , Ovarian Neoplasms/genetics , Proteins/genetics , Tumor Suppressor Protein p53/genetics , Aged , Apoptosis/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Humans , Intercellular Signaling Peptides and Proteins , Middle Aged , Ovarian Neoplasms/pathology , Prognosis
12.
Life Sci Alliance ; 3(9)2020 09.
Article in English | MEDLINE | ID: mdl-32699151

ABSTRACT

Diabetic cardiomyopathy (DCM) is a major cause of mortality/morbidity in diabetes mellitus patients. Although tetrahydrobiopterin (BH4) shows therapeutic potential as an endogenous cardiovascular target, its effect on myocardial cells and mitochondria in DCM and the underlying mechanisms remain unknown. Here, we determined the involvement of BH4 deficiency in DCM and the therapeutic potential of BH4 supplementation in a rodent DCM model. We observed a decreased BH4:total biopterin ratio in heart and mitochondria accompanied by cardiac remodeling, lower cardiac contractility, and mitochondrial dysfunction. Prolonged BH4 supplementation improved cardiac function, corrected morphological abnormalities in cardiac muscle, and increased mitochondrial activity. Proteomics analysis revealed oxidative phosphorylation (OXPHOS) as the BH4-targeted biological pathway in diabetic hearts as well as BH4-mediated rescue of down-regulated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) signaling as a key modulator of OXPHOS and mitochondrial biogenesis. Mechanistically, BH4 bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and activated downstream AMP-activated protein kinase/cAMP response element binding protein/PGC-1α signaling to rescue mitochondrial and cardiac dysfunction in DCM. These results suggest BH4 as a novel endogenous activator of CaMKK2.


Subject(s)
Biopterins/analogs & derivatives , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Diabetic Cardiomyopathies/drug therapy , AMP-Activated Protein Kinases/genetics , Animals , Biopterins/pharmacology , Cyclic AMP Response Element-Binding Protein/genetics , Diabetes Mellitus/metabolism , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Heart/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Myocardial Contraction , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Organelle Biogenesis , Oxidative Phosphorylation , Rats , Rats, Long-Evans , Signal Transduction/physiology
13.
Anticancer Res ; 40(7): 3839-3846, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32620623

ABSTRACT

BACKGROUND/AIM: Because 50% of uveal melanoma metastasize within 10 years of diagnosis, there is urgent need for accurate prognostic factors. MATERIALS AND METHODS: To identify genes that can act as prognostic factors in uveal melanoma, we performed survival analyses using three independent cohorts. Using log-rank test and univariate cox regression, genes which could stratify the prognosis in all cohorts simultaneously depending on their expression levels were selected as novel biomarkers. Hub genes were obtained by analyzing the interaction and relationship between the selected genes using String and Cytoscape. Additionally, prognostic power was calculated by using C-indices and AUC. RESULTS: A total of 37 oncogene-like and 14 tumor suppressor-like genes were selected. Protein-protein analysis revealed that NDUFB9, NDUFV2, CYC1 among oncogene-like genes, CTNNB1 among tumor suppressor-like genes were found to be hub genes and core biomarkers in uveal melanoma. CONCLUSION: NDUFB9, NDUFV2, CYC1 and CTNNB1 genes may act as prognostic factors in uveal melanoma.


Subject(s)
Biomarkers, Tumor/genetics , Melanoma/genetics , Uveal Neoplasms/genetics , Cohort Studies , Computational Biology/methods , Databases, Genetic , Female , Humans , Kaplan-Meier Estimate , Male , Melanoma/mortality , Middle Aged , Oncogenes , Prognosis , Protein Interaction Maps , Transcriptome , Uveal Neoplasms/mortality
14.
Ther Adv Med Oncol ; 12: 1758835920927838, 2020.
Article in English | MEDLINE | ID: mdl-32550865

ABSTRACT

BACKGROUND: High cathepsin D has been associated with poor prognosis in breast cancer; however, the results of many studies are controversial. Here, we assessed the association between high cathepsin D levels and worse breast cancer prognosis by conducting a meta-analysis. METHODS: A comprehensive search strategy was used to search relevant literature in PUBMED and EMBASE by September 2018. The meta-analysis was performed in Review Manager 5.3 using hazard ratios (HRs) with 95% confidence intervals (CIs). RESULTS: A total of 15,355 breast cancer patients from 26 eligible studies were included in this meta-analysis. Significant associations between elevated high cathepsin D and poor overall survival (OS) (HR = 1.61, 95% CI: 1.35-1.92, p < 0.0001) and disease-free survival (DFS) (HR = 1.52, 95% CI: 1.31-2.18, p < 0.001) were observed. In the subgroup analysis for DFS, high cathepsin D was significantly associated with poor prognosis in node-positive patients (HR = 1.38, 95% CI: 1.25-1.71, p < 0.00001), node-negative patients (HR = 1.78, 95% CI: 1.39-2.27, p < 0.0001), early stage patients (HR = 1.73, 95% CI: 1.34-2.23, p < 0.0001), and treated with chemotherapy patients (HR = 1.60, 95% CI: 1.21-2.12, p < 0.001). Interestingly, patients treated with tamoxifen had a low risk of relapse when their cathepsin D levels were high (HR = 0.71, 95% CI: 0.52-0.98, p = 0.04) and a high risk of relapse when their cathepsin D levels were low (HR = 1.50, 95% CI: 1.22-1.85, p = 0.0001). CONCLUSIONS: Our meta-analysis suggests that high expression levels of cathepsin D are associated with a poor prognosis in breast cancer. Based on our subgroup analysis, we believe that cathepsin D can act as a marker for poor breast cancer prognosis and also as a therapeutic target for breast cancer.

15.
Korean J Physiol Pharmacol ; 24(4): 299-310, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32587124

ABSTRACT

Alzheimer's disease (AD) is a multi-faceted neurodegenerative disease. Thus, current therapeutic strategies require multitarget-drug combinations to treat or prevent the disease. At the present time, single drugs have proven to be inadequate in terms of addressing the multifactorial pathology of AD, and multitarget-directed drug design has not been successful. Based on these points of views, it is judged that combinatorial drug therapies that target several pathogenic factors may offer more attractive therapeutic options. Thus, we explored that the combination therapy with lower doses of cilostazol and aripiprazole with add-on donepezil (CAD) might have potential in the pathogenesis of AD. In the present study, we found the superior efficacies of donepezil add-on with combinatorial mixture of cilostazol plus aripiprazole in modulation of expression of AD-relevant genes: Aß accumulation, GSK-3ß, P300, acetylated tau, phosphorylated-tau levels, and activation of α-secretase/ADAM 10 through SIRT1 activation in the N2a Swe cells expressing human APP Swedish mutation (N2a Swe cells). We also assessed that CAD synergistically raised acetylcholine release and choline acetyltransferase (CHAT) expression that were declined by increased ß-amyloid level in the activated N2a Swe cells. Consequently, CAD treatment synergistically increased neurite elongation and improved cell viability through activations of PI3K, BDNF, ß-catenin and a7-nicotinic cholinergic receptors in neuronal cells in the presence of Aß1-42. This work endorses the possibility for efficient treatment of AD by supporting the synergistic therapeutic potential of donepezil add-on therapy in combination with lower doses of cilostazol and aripiprazole.

16.
J Med Internet Res ; 22(5): e16084, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32369034

ABSTRACT

BACKGROUND: Prognostic genes or gene signatures have been widely used to predict patient survival and aid in making decisions pertaining to therapeutic actions. Although some web-based survival analysis tools have been developed, they have several limitations. OBJECTIVE: Taking these limitations into account, we developed ESurv (Easy, Effective, and Excellent Survival analysis tool), a web-based tool that can perform advanced survival analyses using user-derived data or data from The Cancer Genome Atlas (TCGA). Users can conduct univariate analyses and grouped variable selections using multiomics data from TCGA. METHODS: We used R to code survival analyses based on multiomics data from TCGA. To perform these analyses, we excluded patients and genes that had insufficient information. Clinical variables were classified as 0 and 1 when there were two categories (for example, chemotherapy: no or yes), and dummy variables were used where features had 3 or more outcomes (for example, with respect to laterality: right, left, or bilateral). RESULTS: Through univariate analyses, ESurv can identify the prognostic significance for single genes using the survival curve (median or optimal cutoff), area under the curve (AUC) with C statistics, and receiver operating characteristics (ROC). Users can obtain prognostic variable signatures based on multiomics data from clinical variables or grouped variable selections (lasso, elastic net regularization, and network-regularized high-dimensional Cox-regression) and select the same outputs as above. In addition, users can create custom gene signatures for specific cancers using various genes of interest. One of the most important functions of ESurv is that users can perform all survival analyses using their own data. CONCLUSIONS: Using advanced statistical techniques suitable for high-dimensional data, including genetic data, and integrated survival analysis, ESurv overcomes the limitations of previous web-based tools and will help biomedical researchers easily perform complex survival analyses.


Subject(s)
Neoplasms/genetics , Survival Analysis , Humans , Internet , Neoplasms/mortality , Prognosis
17.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354205

ABSTRACT

Relapse of acute lymphoblastic leukemia (ALL) is dangerous and it worsens the prognosis of patients; however, prognostic markers or therapeutic targets for ALL remain unknown. In the present study, using databases such as TARGET, GSE60926 and GSE28460, we determined that KIF2C and its binding partner, KIF18B are overexpressed in patients with relapsed ALL compared to that in patients diagnosed with ALL for the first time. As 50% of the residues are exactly the same and the signature domain of KIF2C is highly conserved between human and zebrafish, we used zebrafish embryos as a model to investigate the function of kif2c in vivo. We determined that kif2c is necessary for lymphopoiesis in zebrafish embryos. Additionally, we observed that kif2c is not related to differentiation of HSCs; however, it is important for the maintenance of HSCs as it provides survival signals to HSCs. These results imply that the ALL relapse-related gene KIF2C is linked to the survival of HSCs. In conclusion, we suggest that KIF2C can serve as a novel therapeutic target for relapsed ALL.


Subject(s)
Kinesins/genetics , Neoplasm Recurrence, Local/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Zebrafish/embryology , Amino Acid Sequence , Animals , Biomarkers, Tumor/genetics , Conserved Sequence , Databases, Genetic , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Hematopoiesis , Humans , Kinesins/chemistry , Male , Protein Domains , Up-Regulation , Zebrafish/genetics , Zebrafish Proteins/genetics
18.
J Toxicol Environ Health A ; 83(3): 126-134, 2020 02 01.
Article in English | MEDLINE | ID: mdl-32114955

ABSTRACT

Malignant pleural mesothelioma (MPM) is a type of cancer characterized by a short survival time and poor prognosis. Malignant pleural mesothelioma is most frequently associated with exposure to asbestos and other elongated mineral fibers. The aim of this study was to examine molecular differences between asbestos-exposed and non-exposed MPM patients and assess prognostic significances of molecular factors. Clinical and genetic data were downloaded from Cancer Genome Atlas. To identify the molecular differences, Significant Analysis of Microarray method was used. Prognostic significances of differentially expressed genes were confirmed by using Kaplan-Meier curve with the Log-Rank test. Although mRNAs did not exhibit any significant differences between the two patient groups, nine miRNAs were found to be down-regulated in the asbestos-exposed group. The top five pathways most relevant to the selected miRNAs were extracted through pathway enrichment analysis. Survival analysis revealed that high expression of only hsa-miR-98 was significantly associated with poor prognosis in patients with asbestos-exposed MPM. Evidence suggests that management of the aggressiveness and progression of asbestos-induced MPM may require high levels of hsa-miR-98 due to its tumor-suppressive role. This study might be helpful in enhancing our understanding of the biological mechanisms underlying asbestos-induced MPM and for acquiring greater insights into targeted therapy.Abbreviations: FDR: false discovery rate; MM: malignant mesothelioma; MPM: malignant pleural mesothelioma; mRNA: messenger RNA; miRNA: microRNA; SAM: significance analysis of microarrays; TCGA: the cancer genome atlas.


Subject(s)
Asbestos/toxicity , Carcinogens/toxicity , Mesothelioma/diagnosis , MicroRNAs/metabolism , Aged , Biomarkers, Tumor , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mesothelioma/chemically induced , MicroRNAs/genetics , Middle Aged
19.
Eur J Pharmacol ; 857: 172454, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31202803

ABSTRACT

Cerebrovascular dysfunction is crucially associated with cognitive impairment and a high prevalence of psychotic symptoms in the vascular dementia characterized by oxidative stress and multifactorial neurodegeneration. In this study, the significant decrease in BDNF expression in HT22 cells due to H2O2 (0.25 mM) was little affected by either aripiprazole (1 µM) or cilostazol (1 µM) alone, but significantly increased by cotreatment with both drugs. Even in the presence of H2O2, P-CK2α (Tyr 255), nuclear P-CREB (Ser 133), and nuclear P-ß-catenin (Ser 675) levels were significantly increased in a synergistic manner by aripiprazole plus cilostazol cotreatment. Aripiprazole and cilostazol cotreatment synergistically increased P-GSK-3ß (Ser 9) level. Nrf2/HO-1 expression was significantly elevated time- and concentration-dependently by either aripiprazole or cilostazol. In line with these, concurrent treatment with aripiprazole (1 µM) plus cilostazol (1 µM) significantly increased Nrf2 and HO-1 expression in a synergistic manner, accompanying with increased ARE luciferase activity, while each drug monotherapy showed little effects. Consequently, this cotreatment synergistically ameliorated the attenuated neurite outgrowth induced by H2O2 in the HT22 cells, and these were inhibited by K252A (inhibitor of BDNF receptor), TBCA (CK2 inhibitor), imatinib (ß-catenin inhibitor) and ZnPP (inhibitor of HO-1), indicating that BDNF, P-CK2α, ß-catenin and HO-1 activation are implicated in the enhanced neurite outgrowth. This study highlights that cotreatment with low concentrations of aripiprazole and cilostazol synergistically elicits neuroprotective effects by overcoming oxidative stress-evoked neurotoxicity associated with increased neurite outgrowth, providing a rationale for the use of this combinatorial treatment in vascular dementia.


Subject(s)
Aripiprazole/pharmacology , Cilostazol/pharmacology , Hippocampus/cytology , Neuroprotective Agents/pharmacology , Animals , Casein Kinase II/metabolism , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Drug Interactions , Gene Expression Regulation, Enzymologic/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Heme Oxygenase-1/metabolism , Hydrogen Peroxide/toxicity , Membrane Proteins/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Neurites/drug effects , Neurites/metabolism , Phosphoproteins/metabolism , beta Catenin/metabolism
20.
Behav Brain Res ; 365: 133-140, 2019 06 03.
Article in English | MEDLINE | ID: mdl-30851315

ABSTRACT

Cerebrovascular dysfunction is associated with cognitive impairment in vascular dementia patients. This study aimed to explore augmented improvement of cognition and memory by aripiprazole add-on for cilostazol treatment in vascular dementia model. Male C57BL/6 mice were subjected to BCAS, and spatial probe and memory retention were examined using the Morris water maze (MWM) test. In the present study, the escape latency on the first day after 3rd week was 21.4 ± 4.0 s in sham-operated mice, and 76.3 ± 4.2 s in the vehicle-treated BCAS mice. In the spatial probe tests in the 3rd week, aripiprazole (1 mg/kg/day) showed time-dependently amelioration in spatial learning and memory impairments in contrast to 0.5 mg/kg/day. After treatment with 20 mg/kg/day of cilostazol for 3 weeks, the escape latency significantly decreased to 26.6 ± 5.8 s on the first day and further shortened to 21.6 ± 6.8 s on the fourth day. When the BCAS mice were concurrently treated with 0.5 mg/kg/day aripiprazole plus 20 mg/kg/day of cilostazol for 3 weeks, the escape latency was more shortened from 20.4 ± 1.2 s (1st day) to 14.9 ± 1.7 s on the 4th day of the 3-week trials. Furthermore, decreased spatial memory retention in BCAS mice was significantly alleviated by aripiprazole plus cilostazol cotreatment, indicating the benefit of aripiprazole add-on therapy. In line with these, significantly increased mBDNF and P-CREB levels and reduced apoptosis were identified in the BCAS mouse brain dentate gyrus by cotreatment as contrasted to each monotherapy. These results may provide the synergistic therapeutic avenues for augmented improvement of cognition and memory by cotreatment with aripiprazole plus cilostazol in cases of vascular dementia.


Subject(s)
Aripiprazole/pharmacology , Cognition/drug effects , Memory/drug effects , Animals , Aripiprazole/metabolism , Brain/physiopathology , Brain Ischemia/physiopathology , Brain Ischemia/psychology , Carotid Stenosis/physiopathology , Cilostazol/metabolism , Cilostazol/pharmacology , Cognitive Dysfunction/drug therapy , Dementia, Vascular/physiopathology , Disease Models, Animal , Drug Therapy, Combination , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Neuroprotective Agents/administration & dosage , Spatial Learning/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...