Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 8(14): 2100865, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306987

ABSTRACT

Organic photovoltaics (OPVs) with nonfullerene acceptors (NFAs) feature excellent device performance and device stability. However, they are facing problems when the amine-rich polyelectrolytes are used as cathode interfacial layers. In this work, a small molecule, ethanedithiol (EDT) at the polyethyleneimine ethoxylated (PEIE)/active layer interface is inserted for mitigating the undesirable reaction between amine-rich groups and electron-acceptor moieties in NFA. The main role of EDT is to passivate the PEIE surface and prevent electron flow to NFA and the unwanted reaction can be mitigated. It improves the performance of OPV devices by reducing the work function, decreasing trap-assisted recombination, and improving electron-mobility. As a result, the flexible device with the PEIE interfacial layer with a power conversion efficiency (PCE) of 7.20% can be improved to 10.11% after the inclusion of EDT. Moreover, EDT-modified device can retain 98.18% after it is bent for 200 cycles and can maintain 80.83% of its initial PCE under continuous light illuminated in ambient conditions without any encapsulation. Based on these findings, the proposed strategy constitutes a crucial step toward highly efficient flexible OPVs.

2.
ACS Appl Mater Interfaces ; 10(48): 41578-41585, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30406653

ABSTRACT

The introduction of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a standard hole transport layer greatly increased the efficiency of early organic solar cells. However, because PEDOT:PSS has a metallic property, it can still form a barrier by means of metal-semiconductor contact at its interface with the photoactive layer. In this study, we modified the PEDOT:PSS surface with hydroquinone (HQ) to remove that barrier. HQ treatment of the PEDOT:PSS surface lowered the hole transport barrier at the interface between the PEDOT:PSS and the active layer. In addition, because of the secondary doping effect of HQ, the sheet resistance of the PEDOT:PSS surface decreased by almost 2 orders of magnitude. As a result, the device fabricated with the HQ-modified PEDOT:PSS showed a 28% increase in efficiency compared to the device without HQ treatment. Modifying the PEDOT:PSS surface with HQ solution is an easy way to effectively boost the performance of polymer solar cells.

3.
Bioresour Technol ; 258: 203-207, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29525595

ABSTRACT

Indium removal and recovery on a carbon electrode under a microbial fuel cell (MFC)-based oxidation/reduction reaction were examined using synthetic wastewater. More than 90% of In3+ ions were removed after continuous operation of the MFC for 14 days with an average current generation of ∼50 µA. During operation, indium particulates formed on the cathode carbon electrode. Scanning electron microscopy equipped with X-ray energy dispersive spectroscopy showed that they were composed of amorphous and crystalline indium hydroxides (In(OH)3 and In(OH)·H2O). When the current flow was reversed to drive the oxidation of the particles to recover the indium from indium hydroxides, a few indium oxide (In2O3) nanocrystals with a rectangular platelet shape formed on the electrode, while the majority of the amorphous and crystalline indium hydroxides re-dissolved into the aqueous environment. Overall, these results demonstrate a feasible route towards the MFC-based recovery of indium with the simultaneous generation of bioelectricity.


Subject(s)
Bioelectric Energy Sources , Carbon , Crystallization , Electricity , Electrodes , Indium
4.
Nanotechnology ; 28(29): 295401, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28649964

ABSTRACT

Solar-to-hydrogen conversion by water splitting in photoelectrochemical cells (PECs) is a promising approach to alleviate problems associated with intermittency in solar energy supply and demand. Several interfacial resistances in photoelectrodes limit the performance of such cells, while the properties of interfaces are not easy to analyze in situ. We applied photoconductive-AFM to analyze the performance of WO3/p+n Si photoanodes, containing an ultra-thin metal interface of either Au or Pt. The Au interface consisted of Au nanoparticles with well-ordered interspacing, while Pt was present in the form of a continuous film. Photoconductive-AFM data show that upon illumination significantly larger currents are measured for the WO3/p+n Si anode equipped with the Au interface, as compared to the WO3/p+n Si anode with the Pt interface, in agreement with the better performance of the former electrode in a photoelectrochemical cell. The remarkable performance of the Au-containing electrode is proposed to be the result of favorable electron-hole recombination rates induced by the Au nanoparticles in a plasmon resonance excited state.

5.
J Microbiol Biotechnol ; 27(2): 342-349, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-27840398

ABSTRACT

Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Bacteriological Techniques , Polyesters/metabolism , Polymers/metabolism , Sewage/microbiology , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/metabolism , Bacteria/classification , Bacteria/genetics , Biodegradation, Environmental , Biofilms , Microscopy , Petroleum/metabolism , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/metabolism , RNA, Ribosomal, 16S , Sequence Analysis, DNA
6.
Adv Mater ; 27(23): 3553-9, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25946427

ABSTRACT

The change in the work function (WF) of ZnO with amine-based interfacial mole-cules (AIM) can be controlled by the number of amine groups. AIM with a larger amine group can induce a stronger interface dipole between the amine groups and the ZnO surface, leading to a greater reduction of the WF.

7.
ChemSusChem ; 8(1): 172-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25410298

ABSTRACT

We show that a graphitic carbon interfacial layer, derived from C70 by annealing at 500 °C, results in a significant increase in the attainable photocurrent of a photoelectrochemical cell that contains a WO3 -functionalized fluorine-doped tin oxide (FTO) photoanode. Time-resolved photoluminescence spectroscopy, photoconductive atomic force microscopy, Hall measurements, and electrochemical impedance spectroscopy show that the increase in photocurrent is the result of fast and selective electron transport from optically excited WO3 through the graphitic carbon interfacial layer to the FTO-coated glass electrode. Thus the energy efficiency of perspective solar-to-fuel devices can be improved by modification of the interface of semiconductors and conducting substrate electrodes by using graphitized fullerene derivatives.


Subject(s)
Electric Power Supplies , Fullerenes/chemistry , Graphite/chemistry , Photochemical Processes , Solar Energy , Electrochemistry , Electrodes , Electron Transport , Halogenation , Hydrogen/chemistry , Tin Compounds/chemistry
8.
Nanotechnology ; 25(26): 265702, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24916322

ABSTRACT

Ag mesh-indium tin oxide (ITO) hybrid transparent conductive films were fabricated and evaluated for use in film heaters. PS monolayer templates were prepared using highly mono-dispersed PS spheres (11.2 µm) obtained by a filtering process with micro-sieves. At first, three Ag meshes with different sheet resistances (20, 100, and 300 Ω sq(-1)) and transmittances (70, 73, and 76%) were evaluated for film heaters in terms of voltage and long-term stability. Subsequently, in an effort to obtain better transmittance, Ag mesh-ITO hybrid heaters were fabricated utilizing finite ITO depositions. At the optimised ITO thickness (15 nm), the sheet resistance and the transmittance were 300 Ω sq(-1) and 88%, respectively, which indicates that this material is a good potential candidate for an efficient defroster in vehicles.

9.
J Nanosci Nanotechnol ; 14(4): 2885-90, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24734705

ABSTRACT

We have fabricated Cr nanodot Schottky diodes utilizing AAO templates formed on n-Si substrates. The diameters of the diodes were 75.0, 57.6, and 35.8 nm. Cr nanodot Schottky diodes with smaller diameters yield higher current densities than those with larger diameters due to an enhanced tunnel current contribution, which is attributed to a reduction in the barrier thickness. The diameters of Cr nanodots smaller than the Debye length (156 nm) play an important role in the reduction of barrier thickness. Also, we have fabricated Cr-Si nanorod Schottky diodes with three different lengths (130, 220, and 330 nm) by dry etching of n-Si substrate. Cr-Si nanorod Schottky diodes with longer nanorods yield higher reverse current than those with shorter nanorods due to the enhanced electric field, which is attributed to a high aspect ratio of Si nanorod.

10.
Sci Rep ; 4: 4306, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24603531

ABSTRACT

In order to induce greater light absorption, nano-patterning is often applied to the metal-oxide buffer layer in inverted bulk-heterojunction(BHJ) solar cells. However, current homogeneity was significantly disturbed at the interface, leading to an efficiency that was not fully optimized. In this work, an additional PC61BM layer was inserted between the ZnO ripple and the photoactive layer to enhance the electron extraction. The insertion of additional PC61BM layer provided substantial advantages in the operation of inverted BHJ solar cells; specifically, it enhanced current homogeneity and lowered accumulation and trapping of photogenerated charges at the ZnO interface. Inclusion of the additional PC61BM layer led to effective quenching of electron-hole recombination by a reduction in the number of accumulated charges at the surface of ZnO ripples. This resulted in a 16% increase in the efficiency of inverted BHJ solar cells to 7.7%, compared to solar cells without the additional PC61BM layer.

11.
J Nanosci Nanotechnol ; 13(12): 8086-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266196

ABSTRACT

The technique of magnetic resonance force microscopy (MRFM) is proposed with the purpose to enhance the sensitivity of the inductively detected conventional magnetic resonance technique. The IBM MRFM group demonstrated magnetic resonance imaging (MRI) to the nanoscale level by using MRFM. The spatial resolution of the inductive method is on the order of a few micrometers. In this paper, we introduce an MRFM probe equipped with a charge coupled device (CCD) camera. We show that this CCD camera is very helpful to correct the optical fiber-to-cantilever and magnet-to-sample alignments which can be the determinant of success or failure in an MRFM experiment. Also, this camera enables us to monitor an experimental setup inside a vacuum chamber of P = 10(-5) mbar in real-time. Then, we verified the usefulness of the CCD camera through an electron spin resonance experiment on a diphenylpicrylhydrazyl (DPPH) sample. We also discuss the extensibility of the CCD camera for low temperature experiments, creating an atmosphere in which MRFM can flourish truly to its full potential in the field of nanotechnology.

12.
J Nanosci Nanotechnol ; 12(6): 4864-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22905542

ABSTRACT

We have verified that SnO2 nano-wire has an n-type semiconductor property and it can be a p-type one when it is exposed to O2. We employed conductive AFM system to measure the I-V curve and resistance of single SnO2 nano-wire which had been synthesized on the Au thin film by a thermal process. To analyze a effect of O2 ionosorption into nano-wire, resistance was measured with various O2 concentration and we observed increment and maintenance of resistance which caused by O2 ionosorption. Also, the O2 ionosorption causes a type transfer of semiconductor and this phenomenon was verified by comparing the Schottky property of nano-wire before and after O2 exposure.


Subject(s)
Conductometry/methods , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxygen/chemistry , Tin Compounds/chemistry , Absorption , Electric Conductivity , Materials Testing/methods , Particle Size
13.
Nanoscale Res Lett ; 7: 30, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22221314

ABSTRACT

We developed a method to use NH2-functionalized polymer films to align and immobilize DNA molecules on a Si substrate. The plasma-polymerized cyclohexane film was deposited on the Si substrate according to the radio frequency plasma-enhanced chemical vapor deposition method using a single molecular precursor, and it was then treated by the dielectric barrier discharge method in a nitrogen environment under atmospheric pressure. Changes in the chemistry of the surface functional groups were studied using X-ray photoelectron spectroscopy and Fourier transformed infrared spectroscopy. The wettability of the surfaces was examined using dynamic contact angle measurements, and the surface morphology was evaluated using atomic force microscopy.We utilized a tilting method to align λ-DNA molecules that were immobilized by the electrostatic interaction between the amine groups in NH2-functionalized polymer films and the phosphate groups in the DNA. The DNA was treated with positively charged gold nanoparticles to make a conductive nanowire that uses the DNA as a template. We observed that the NH2-functionalized polymer film was useful for aligning and immobilizing the DNA, and thus the DNA-templated nanowires.

SELECTION OF CITATIONS
SEARCH DETAIL
...