Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 15(7): 5148-50, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26373094

ABSTRACT

InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

2.
J Nanosci Nanotechnol ; 15(10): 7457-61, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726350

ABSTRACT

In this study, we present a GaAs varactor diode with a hyperabrupt junction for the enhancement of breakdown voltage and capacitance variation in a reverse bias state. The hyperabrupt doping profile in the n-type active layer is prepared in a controlled nonlinear manner, with the density of the dopants increasing towards the Schottky junction. The hyperabrupt GaAs varactor diode is fabricated and characterized for breakdown voltage and capacitance over the electric field, induced by an applied reverse bias voltage. A reduced value of the electric field is observed owing to the nonlinear behavior of the electric field at the hyperabrupt junction, although the device has a larger doping density at the Schottky junction. Furthermore, the capacitance ratio of the hyperabrupt junction diode is also improved. Variation in the device capacitance is affected by variation in the depletion region across the junction. Technology CAD is used to understand the experimental phenomena by considering the magnitude of charge density as a function of the doping profile. A higher breakdown voltage and greater capacitance modulation are shown in the hyperabrupt junction diode compared to the uniform junction diode.

3.
J Nanosci Nanotechnol ; 15(10): 7467-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726352

ABSTRACT

Multiple techniques such as fluoride-based plasma treatment, a p-GaN or p-AlGaN gate contact, and a recessed gate structure have been employed to modulate the threshold voltage of AlGaN/GaN-based high-electron-mobility transistors (HEMTs). In this study, we present dual-gate AlGaN/GaN HEMTs grown on a Si substrate, which effectively shift the threshold voltage in the positive direction. Experimental data show that the threshold voltage is shifted from -4.2 V in a conventional single-gate HEMT to -2.8 V in dual-gate HEMTs. It is evident that a second gate helps improve the threshold voltage by reducing the two-dimensional electron gas density in the channel. Furthermore, the maximum drain current, maximum transconductance, and breakdown voltage values of a single-gate device are not significantly different from those of a dual-gate device. For the fabricated single- and dual-gate devices, the values of the maximum drain current are 430 mA/mm and 428 mA/mm, respectively, whereas the values of the maximum transconductance are 83 mS/mm and 75 mS/mm, respectively.

4.
J Nanosci Nanotechnol ; 14(11): 8141-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25958488

ABSTRACT

In this work, different gate-head structures have been compared in the context of AlGaN/GaN-based high-electron-mobility transistors (HEMTs). Field-plate (FP) technology self-aligned to the gate electrode leads to various gate-head structures, most likely gamma (γF)-gate, camel (see symbol)-gate, and mushroom-shaped (T)-gate. In-depth comparison of recessed gate-head structures demonstrated that key performance metrics such as transconductance, output current, and breakdown voltage are better with the T-gate head structure. The recessed T-gate with its one arm toward the source side not only reduces the source-access resistance (R(g) +R(gs)), but also minimizes the source-side dispersion and current leakage, resulting in high transconductance (G(m)) and output current (I(DS)). At the same time, the other arm toward the drain-side reduces the drain-side dispersion and tends to distribute electric field peaks uniformly, resulting in high breakdown voltage (V(BR)). DC and RF analysis showed that the recessed T-gate FP-HEMT is a suitable candidate not only for high-frequency operation, but also for high-power applications.


Subject(s)
Aluminum Compounds/chemistry , Electronics/methods , Gallium/chemistry
5.
J Nanosci Nanotechnol ; 14(12): 9436-42, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971079

ABSTRACT

We report two approaches to fabricating high performance normally-off AIGaN/GaN high-electron mobility transistors (HEMTs). The fabrication techniques employed were based on recessed-metal-insulator-semiconductor (MIS) gate and recessed fluoride-based plasma treatment. They were selectively applied to the area under the gate electrode to deplete the two-dimensional electron gas (2-DEG) density. We found that the recessed gate structure was effective in shifting the threshold voltage by controlling the etching depth of gate region to reduce the AIGaN layer thickness to less than 8 nm. Likewise, the CF4 plasma treatment effectively incorporated negatively charged fluorine ions into the thin AIGaN barrier so that the threshold voltage shifted to higher positive values. In addition to the increased threshold voltage, experimental results showed a maximum drain current and a maximum transconductance of 315 mA/mm and 100 mS/mm, respectively, for the recessed-MIS gate HEMT, and 340 mA/mm and 330 mS/mm, respectively, for the fluoride-based plasma treated HEMT.

SELECTION OF CITATIONS
SEARCH DETAIL
...