Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(24): 31864-31872, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38836337

ABSTRACT

While polydopamine (PDA) possesses the surface-independent adhesion property of mussel-binding proteins, significant differences exist between them. Particularly, PDA's short and rigid backbone differs from the long and flexible protein sequence of mussel-binding proteins. Given that adhesion relies on achieving a conformal contact with large surface coverage, PDA has drawbacks as an adhesive. In our study, we investigated the roles of each building block of PDA to build a better understanding of their binding mechanisms. Initially, we anticipated that catecholamine oligomers form specific binding with substrates. However, our study showed that the universal adhesion of PDA is initiated by the solubility limit of growing oligomers by forming agglomerates, complemented by multiple binding modes of catechol. Notably, in the absence of amines, poly(catechol) either remained in solution or formed minor suspensions without any surface coating, underscoring the essential role of amines in the adhesion process by facilitating insoluble aggregate formation. To substantiate our findings, we induced poly(catechol) aggregation using quaternized poly(4-vinylpyridine) (qPVP), leading to subsequent surface adhesion upon agglomerate formation.


Subject(s)
Amines , Catechols , Indoles , Polymers , Indoles/chemistry , Catechols/chemistry , Polymers/chemistry , Amines/chemistry , Animals , Adhesives/chemistry , Surface Properties , Proteins
2.
Dalton Trans ; 53(24): 10328-10337, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38836318

ABSTRACT

We previously reported that phenyl- and vinyl-silsesquioxanes (SQs), [RSiO1.5]8,10,12 (R = Ph or vinyl) functionalized with three or more conjugated moieties show red-shifted absorption- and emission features suggesting 3-D conjugation via a cage centered LUMOs. Corner missing [PhSiO1.5]7(OSiMe3)3 and edge opened, end capped [PhSiO1.5]8(OSiMe2)2 (double decker, DD) analogs also offer red shifted spectra again indicating 3-D conjugation and a cage centered LUMO. Copolymerization of DD [PhSiO1.5]8(OSiMevinyl)2 with multiple R-Ar-Br gives copolymers with emission red-shifts that change with degree of polymerization (DP), exhibit charge transfer to F4TNCQ and terpolymer averaged red-shifts suggesting through chain conjugation even with two (O-Si-O) end caps possibly via a cage centered LUMO. Surprisingly, ladder (LL) SQ, (vinylMeSiO2)[PhSiO1.5]4(O2SiMevinyl) copolymers offer emission red-shifts even greater for analogous copolymers requiring a different explanation. Here we assess the photophysical behavior of copolymers of a more extreme SQ form: the half cage [PhSiO1.5]4(OSiMe2Vinyl)4, Vy4HC SQs. We again see small red-shifted absorptions coupled with significant red-shifted emissions, even with just a half cage, thus further supporting the existence of pπ-dπ and/or σ*-π* conjugation through Si-O-Si bonds and contrary to most traditional views of Si-O-Si linked polymers. These same copolymers donate an electron to F4TCNQ generating the radical anion, F4TCNQ-. as further proof of conjugation. Column chromatographic separation of short from longer chain oligomers reveals a direct correlation between DP and emission λmax red-shifts as another indication of conjugation. Further, one- and two-photon absorption and emission spectroscopy reveals multiple excited fluorescence-emitting states in a violation of Kasha's rule wherein emission occurs only from the lowest excited state. Traditional modeling studies again find HOMO LUMO energy levels residing only on the aromatic co-monomers rather than through Si-O-Si bonds as recently found in related polymers.

3.
Org Biomol Chem ; 21(31): 6302-6306, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37490038

ABSTRACT

A new triggered self-assembly method, which utilizes retro Diels-Alder (rDA)-promoted self-assembly of a macrocyclic diacetylene, was developed. The steric bulk present in a Diels-Alder (DA) adduct was released by a thermally promoted rDA reaction, resulting in the generation of a linear diacetylene that readily self-assembles to form a supramolecular polymer. The maleimide-containing blue-colored polydiacetylene, which was generated by UV irradiation, was utilized as a thiol specific colorimetric sensor.

4.
J Am Chem Soc ; 144(39): 17889-17896, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36126329

ABSTRACT

High-resolution structures are crucial for understanding the functional properties of nanomaterials. We applied single-particle cryo-electron microscopy (cryo-EM), a method traditionally used for structure determination of biological macromolecules, to obtain high-resolution structures of synthetic non-biological filaments formed by photopolymerization of macrocyclic diacetylene (MDA) amphiphilic monomers. Tomographic analysis showed that the MDA monomers self-assemble into hollow nanotubes upon dispersion in water. Single-particle analysis revealed tubes consisting of six pairs of covalently bonded filaments held together by hydrophobic interactions, where each filament is composed of macrocyclic rings stacked in parallel "chair" conformations. The hollow MDA nanotube structures we found may account for the efficient scavenging of amphiphilic pollutants in water and subsequent photodegradation of the guest species.


Subject(s)
Environmental Pollutants , Nanotubes , Cryoelectron Microscopy/methods , Polyacetylene Polymer , Water
5.
Angew Chem Int Ed Engl ; 61(43): e202211465, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36045485

ABSTRACT

Creation of new two-dimensional (2D) architectures has attracted significant attention in the field of self-assembly for structural diversity and new functionalization. Although numerous 2D polymer nanosheets have been reported, 2D nanosheets with tubular channels have been unexplored. Herein, we describe a new strategy for the fabrication of stimulus-responsive conjugated polymer 2D nanosheets with hollow cavities. Amphiphilic macrocyclic diacetylenes self-assembled in an aqueous solution in a columnar manner to afford bilayered 2D nanosheets with intrinsically tubular nanochannels. UV-induced polymerization resulted in the generation of blue-colored tubular conjugated polydiacetylene 2D nanosheets. Immobilization of gold nanoparticles, fluorescence labeling with FRET phenomenon and colorimetric DNA sensing were demonstrated with these new 2D nanosheets. In addition, the free NH2 containing polymerized 2D nanosheet was utilized for conductivity behavior and grafting on graphene oxide (GO).


Subject(s)
Metal Nanoparticles , Stimuli Responsive Polymers , Gold , Polymers/chemistry , Colorimetry
6.
Nat Commun ; 12(1): 4207, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244512

ABSTRACT

Despite their great utility in synthetic and materials chemistry, Diels-Alder (DA) and retro Diels-Alder (rDA) reactions have been vastly unexplored in promoting self-assembly processes. Herein we describe the first example of a retro Diels-Alder (rDA) reaction-triggered self-assembly method. Release of the steric bulkiness associated with the bridged bicyclic DA adduct by the rDA reaction allowed generation of two building blocks that spontaneously self-assembled to form a supramolecular polymer. By employing photopolymerizable lipid building blocks, we demonstrated the efficiency of the rDA-based self-assembly strategy. Generation of reactive functional groups (maleimide and furan) that can be used for further modification of the supramolecular polymer is an additional meritorious feature of the rDA-based approach. Advantage was taken of reactive functional groups to fabricate stimulus-responsive selective and tunable colorimetric sensors. The strategy developed in this study should be useful for the design of systems that participate in triggered molecular assembly.

7.
Sci Rep ; 9(1): 15982, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31690756

ABSTRACT

Creation of hollow, one-dimensional nanomaterials has gained great recent attention in the chemical and material sciences. In a study aimed at discovering new functional materials of this type, we observed that an amphiphilic diacetylene (DA) derivative, containing an azobenzene moiety and an oligo-ethylene group, self-assembles to form nanotubes and undergoes photopolymerization to form hollow polydiacetylene (PDA) nanotubes with a uniform wall thickness and diameter. The azobenzene-PDA nanotubes are photoresponsive in that on-and-off UV-irradiation leads to a reversible morphological change between straight and bent forms in association with E-Z photoisomerization of the azobenzene group. Owing to the UV-induced structural change feature, the new DA and PDA nanotubes serve as a controlled release material. Accordingly, fluorescent rhodamine B encapsulated inside the nanotubes are effectively released by using repeated on-off UV irradiation. Furthermore, photo-release of rhodamine B was shown to occur in an artemia (brine shrimp).

8.
ChemSusChem ; 12(20): 4645-4654, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31419074

ABSTRACT

Sodium batteries have been recognized as a promising alternative to lithium-ion batteries. However, the liquid electrolyte used in these batteries has inherent safety problems. Polymer electrolytes have been considered as safer and more reliable electrolyte systems for rechargeable batteries. Herein, a thermoplastic polyurethane elastomer-based gel polymer electrolyte with high ionic conductivity and high elasticity was reported. It had an ambient-temperature ionic conductivity of 1.5 mS cm-1 and high stretchability, capable of withstanding 610 % strain. Coordination between Na+ ions and polymer chains increased the degree of salt dissociation in the gel polymer electrolyte compared with the liquid electrolyte. An Na/Na3 V2 (PO4 )3 cell assembled with gel polymer electrolyte exhibited good cycling performance in terms of discharge capacity, cycling stability, and rate capability, which was owing to the effective trapping ability of organic solvents in the polymer matrix and uniform flux of sodium ions through the gel polymer electrolyte.

9.
Langmuir ; 34(28): 8365-8373, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29933690

ABSTRACT

Owing to their capability of forming extensive hydrogen bondings and the facile introduction of chirality, cyclic dipeptides (CDPs) have gained great attention as scaffolds for functional supramolecules. Surprisingly, introduction of a photopolymerizable diacetylene (DA) moiety to the CDP afforded nanotubular structures with enhanced stability and reversible thermochromism. A series of CDP-containing DAs (CDP-DAs) are prepared by coupling 10,12-pentacosadiynoic acid with CDPs, cyclo(-Gly-Ser) and cis/trans cyclo(-Ser-Ser). Fabrication of CDP-DA self-assemblies in a polar chloroform and methanol solvent mixture affords nanotubes comprising single-wall and multiwall structures. The self-assembly behavior and morphology characteristic are examined by scanning electron microscopy and transmission electron microscopy. Next, X-ray diffraction analysis confirms well-ordered lamellar structures with a perfect agreement with the bilayer formation leading to the tubular structure via lamellar scrolling behavior. Upon UV irradiation, monomeric CDP-DA tubular assemblies result in the blue-colored CDP/polydiacetylene (PDA) nanotubes. Interestingly, CDP/PDA nanotubes exhibit a reversible blue-to-red color change for over 10 consecutive thermal cycles. The CDP-DA/PDA supramolecular system demonstrates potential applications in developing stimulus-responsive functional materials.


Subject(s)
Dipeptides/chemistry , Nanotubes/chemistry , Hydrogen Bonding , Solvents/chemistry
10.
ACS Appl Mater Interfaces ; 10(5): 5014-5021, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29338173

ABSTRACT

Owing to a unique colorimetric (typically blue-to-red) feature upon environmental stimulation, polydiacetylenes (PDAs) have been actively employed in chemosensor systems. We developed a highly accurate and simple volatile organic compound (VOC) sensor system that can be operated using a conventional smartphone. The procedure begins with forming an array of four different PDAs on conventional paper using inkjet printing of four corresponding diacetylenes followed by photopolymerization. A database of color changes (i.e., red and hue values) is then constructed on the basis of different solvatochromic responses of the 4 PDAs to 11 organic solvents. Exposure of the PDA array to an unknown solvent promotes color changes, which are imaged using a smartphone camera and analyzed using the app. A comparison of the color changes to the database promoted by the 11 solvents enables the smartphone app to identify the unknown solvent with 100% accuracy. Additionally, it was demonstrated that the PDA array sensor was sufficiently sensitive to accurately detect the 11 VOC gases.

11.
Chem Commun (Camb) ; 52(97): 14059-14062, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27858005

ABSTRACT

An azobenzene-containing supramolecular polydiacetylene (PDA) crystal undergoes a photoinduced reversible blue-to-red phase transition accompanied by crystal tearing.

SELECTION OF CITATIONS
SEARCH DETAIL
...