Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Virus Res ; 345: 199383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697296

ABSTRACT

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.


Subject(s)
Antibodies, Bispecific , Antibodies, Neutralizing , Antibodies, Viral , Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/immunology , Humans , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Monoclonal/immunology , Protein Binding , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/immunology , Mice , Neutralization Tests
2.
BMB Rep ; 57(4): 188-193, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38449302

ABSTRACT

Gastric cancer (GC), a leading cause of cancer-related mortality, remains a significant challenge despite recent therapeutic advancements. In this study, we explore the potential of targeting cell surface glucose-regulated protein 94 (GRP94) with antibodies as a novel therapeutic approach for GC. Our comprehensive analysis of GRP94 expression across various cancer types, with a specific focus on GC, revealed a substantial overexpression of GRP94, highlighting its potential as a promising target. Through in vitro and in vivo efficacy assessments, as well as toxicological analyses, we found that K101.1, a fully human monoclonal antibody designed to specifically target cell surface GRP94, effectively inhibits GC growth and angiogenesis without causing in vivo toxicity. Furthermore, our findings indicate that K101.1 promotes the internalization and concurrent downregulation of cell surface GRP94 on GC cells. In conclusion, our study suggests that cell surface GRP94 may be a potential therapeutic target in GC, and that antibody-based targeting of cell surface GRP94 may be an effective strategy for inhibiting GRP94-mediated GC growth and angiogenesis. [BMB Reports 2024; 57(4): 188-193].


Subject(s)
Antibodies, Monoclonal , Stomach Neoplasms , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Humans , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Animals , Mice , Cell Proliferation/drug effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/immunology , Neovascularization, Pathologic/metabolism , Mice, Nude
3.
J Med Virol ; 96(3): e29506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445718

ABSTRACT

With the global pandemic and the continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for effective and broadly neutralizing treatments has become increasingly urgent. This study introduces a novel strategy that targets two aspects simultaneously, using bifunctional antibodies to inhibit both the attachment of SARS-CoV-2 to host cell membranes and viral fusion. We developed pioneering IgG4-(HR2)4 bifunctional antibodies by creating immunoglobulin G4-based and phage display-derived human monoclonal antibodies (mAbs) that specifically bind to the SARS-CoV-2 receptor-binding domain, engineered with four heptad repeat 2 (HR2) peptides. Our in vitro experiments demonstrate the superior neutralization efficacy of these engineered antibodies against various SARS-CoV-2 variants, ranging from original SARS-CoV-2 strain to the recently emerged Omicron variants, as well as SARS-CoV, outperforming the parental mAb. Notably, intravenous monotherapy with the bifunctional antibody neutralizes a SARS-CoV-2 variant in a murine model without causing significant toxicity. In summary, this study unveils the significant potential of HR2 peptide-driven bifunctional antibodies as a potent and versatile strategy for mitigating SARS-CoV-2 infections. This approach offers a promising avenue for rapid development and management in the face of the continuously evolving SARS-CoV-2 variants, holding substantial promise for pandemic control.


Subject(s)
Antibodies, Bispecific , COVID-19 , Humans , Animals , Mice , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Immunoglobulin G , Peptides/genetics , Power, Psychological
4.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38138162

ABSTRACT

Background and Objectives: Gramicidin, a bactericidal antibiotic used in dermatology and ophthalmology, has recently garnered attention for its inhibitory actions against cancer cell growth. However, the effects of gramicidin on ovarian cancer cells and the underlying mechanisms are still poorly understood. We aimed to elucidate the anticancer efficacy of gramicidin against ovarian cancer cells. Materials and Methods: The anticancer effect of gramicidin was investigated through an in vitro experiment. We analyzed cell proliferation, DNA fragmentation, cell cycle arrest and apoptosis in ovarian cancer cells using WST-1 assay, terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL), DNA agarose gel electrophoresis, flow cytometry and western blot. Results: Gramicidin treatment induces dose- and time-dependent decreases in OVCAR8, SKOV3, and A2780 ovarian cancer cell proliferation. TUNEL assay and DNA agarose gel electrophoresis showed that gramicidin caused DNA fragmentation in ovarian cancer cells. Flow cytometry demonstrated that gramicidin induced cell cycle arrest. Furthermore, we confirmed via Western blot that gramicidin triggered apoptosis in ovarian cancer cells. Conclusions: Our results strongly suggest that gramicidin exerts its inhibitory effect on cancer cell growth by triggering apoptosis. Conclusively, this study provides new insights into the previously unexplored anticancer properties of gramicidin against ovarian cancer cells.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Gramicidin/pharmacology , Gramicidin/therapeutic use , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Apoptosis , Cell Proliferation , DNA/pharmacology
5.
Front Immunol ; 14: 1271508, 2023.
Article in English | MEDLINE | ID: mdl-37822941

ABSTRACT

Introduction: The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. Methods: Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. Results: Our comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. Conclusion: These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.


Subject(s)
Antibodies, Bispecific , COVID-19 , Animals , Mice , Humans , SARS-CoV-2 , Antibodies, Bispecific/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral
6.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762405

ABSTRACT

Considerable evidence has accumulated in the last decade supporting the notion that chronic stress is closely related to the growth, metastasis, and angiogenesis of ovarian cancer. In this study, we analyzed the conditioned media in SKOV3 ovarian cancer cell lines treated with catecholamines to identify secreted proteins responding to chronic stress. Here, we observed that epinephrine and norepinephrine enhanced the secretion and mRNA expression of CXC-chemokines (CXCL1, 2, 3, and 8). Neutralizing antibodies to CXCL8 and CXCL8 receptor (CXCR2) inhibitors significantly reduced catecholamine-mediated invasion of SKOV3 cells. Finally, we found that the concentration of CXCL1 and CXCL8 in the plasma of ovarian cancer patients increased with stage progression. Taken together, these findings suggest that stress-related catecholamines may influence ovarian cancer progression through the secretion of CXC-chemokines.

7.
Biomedicines ; 11(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37371752

ABSTRACT

Gentian violet (GV) is known to have antibacterial and antifungal effects, but recent studies have demonstrated its inhibitory effects on the growth of several types of cancer cells. Here, we investigated the anticancer efficacy of GV in ovarian cancer cells. GV significantly reduced the proliferation of OVCAR8, SKOV3, and A2780 cells. Results of transferase dUTP nick and labeling (TUNEL) assay and Western blot assay indicated that the inhibitory effect of GV on ovarian cancer cells was due to the induction of apoptosis. Moreover, GV significantly increased reactive oxygen species (ROS) and upregulated the expression of p53, PUMA, BAX, and p21, critical components for apoptosis induction, in ovarian cancer cells. Our results suggest that GV is a novel antiproliferative agent and is worthy of exploration as a potential therapeutic agent for ovarian cancer.

8.
ACS Appl Mater Interfaces ; 15(21): 26069-26080, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37192384

ABSTRACT

Tangent flow-driven ultrafiltration (TF-UF) is an efficient isolation process of milk exosomes without morphological deformation. However, the TF-UF approach with micro-ultrafiltration SiNx membrane filters suffers from the clogging and fouling of micro-ultrafiltration membrane filter pores with large bioparticles. Thus, it is limited in the long term, continuous isolation of large quantities of exosomes. In this work, we introduced electrophoretic oscillation (EPO) in the TF-UF approach to remove pore clogging and fouling of with micro-ultrafiltration SiNx membrane filters by large bioparticles. As a result, the combined EPO-assisted TF (EPOTF) filtration can isolate large quantities of bovine milk exosomes without deformation. Furthermore, several morphological and biological analyses confirmed that the EPOTF filtration approach could isolate the milk exosomes in high concentrations with high purity and intact morphology. In addition, the uptake test of fluorescent-labeled exosomes by the keratinocyte cells visualized the biological function of purified exosomes. Hence, compared to the TF-UF process, the EPOTF filtration produced a higher yield of bovine milk exosomes without stopping the filtering process for over 200 h. Therefore, this isolation process enables scalable and continuous production of morphologically intact exosomes from bovine milk, suggesting that high-quality exosome purification is possible for future applications such as drug nanocarriers, diagnosis, and treatments.


Subject(s)
Biofouling , Exosomes , Animals , Ultrafiltration , Milk , Biofouling/prevention & control , Filtration , Membranes, Artificial
9.
Antiviral Res ; 212: 105576, 2023 04.
Article in English | MEDLINE | ID: mdl-36870394

ABSTRACT

Rapid emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted an urgent need for the development of broadly applicable and potently neutralizing antibody platform against the SARS-CoV-2, which can be used for combatting the coronavirus disease 2019 (COVID-19). In this study, based on a noncompeting pair of phage display-derived human monoclonal antibodies (mAbs) specific to the receptor-binding domain (RBD) of SARS-CoV-2 isolated from human synthetic antibody library, we generated K202.B, a novel engineered bispecific antibody with an immunoglobulin G4-single-chain variable fragment design, with sub- or low nanomolar antigen-binding avidity. Compared with the parental mAbs or mAb cocktail, the K202.B antibody showed superior neutralizing potential against a variety of SARS-CoV-2 variants in vitro. Furthermore, structural analysis of bispecific antibody-antigen complexes using cryo-electron microscopy revealed the mode of action of K202.B complexed with a fully open three-RBD-up conformation of SARS-CoV-2 trimeric spike proteins by simultaneously interconnecting two independent epitopes of the SARS-CoV-2 RBD via inter-protomer interactions. Intravenous monotherapy using K202.B exhibited potent neutralizing activity in SARS-CoV-2 wild-type- and B.1.617.2 variant-infected mouse models, without significant toxicity in vivo. The results indicate that this novel approach of development of immunoglobulin G4-based bispecific antibody from an established human recombinant antibody library is likely to be an effective strategy for the rapid development of bispecific antibodies, and timely management against fast-evolving SARS-CoV-2 variants.


Subject(s)
Antibodies, Bispecific , COVID-19 , Animals , Mice , Humans , SARS-CoV-2/metabolism , Antibodies, Viral , Antibodies, Bispecific/pharmacology , Cryoelectron Microscopy , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus
10.
J Control Release ; 360: 940-952, 2023 08.
Article in English | MEDLINE | ID: mdl-37001565

ABSTRACT

Owing to a lack of reliable markers and therapeutic targets, pancreatic ductal adenocarcinoma (PDAC) remains the most lethal malignant tumor despite numerous therapeutic advances. In this study, we utilized cell-SELEX to isolate a DNA aptamer recognizing the natural conformation of the target on the cell surface. PAp7T8, an aptamer optimized by size and chemical modification, exhibited specific targeting to pancreatic cancer cells and orthotopic xenograft pancreatic tumors. To confer therapeutic functions to the aptamer, we adopted a drug-conjugated oligobody (DOligobody) strategy. Monomethyl auristatin E was used as a cytotoxic drug, digoxigenin acted as a hapten, and the humanized anti-digoxigenin antibody served as a universal carrier of the aptamer. The resulting PAp7T8-DOligobody showed extended in vivo half-life and markedly inhibited tumor growth in an orthotopic pancreatic cancer xenograft model without causing significant toxicity. Therefore, PAp7T8-DOligobody represents a promising novel therapeutic delivery platform for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pharmaceutical Preparations , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Antibodies , Oligonucleotides/therapeutic use , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
11.
Biomed Pharmacother ; 150: 113051, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35658213

ABSTRACT

Colorectal cancer (CRC) is one of the life-threatening malignancies worldwide. Thus, novel potential therapeutic targets and therapeutics for the treatment of CRC need to be identified to improve the clinical outcomes of patients with CRC. In this study, we found that glucose-regulated protein 94 (GRP94) is overexpressed in CRC tissues, and its high expression is correlated with increased microvessel density. Next, through phage display technology and consecutive in vitro functional isolations, we generated a novel human monoclonal antibody that specifically targets cell surface GRP94 and shows superior internalizing activity comparable to trastuzumab. We found that this antibody specifically inhibits endothelial cell tube formation and simultaneously promotes the downregulation of GRP94 expression on the endothelial cell surface. Finally, we demonstrated that this antibody effectively suppresses tumor growth and angiogenesis of HCT116 human CRC cells without causing severe toxicity in vivo. Collectively, these findings suggest that cell surface GRP94 is a novel potential anti-angiogenic target in CRC and that antibody targeting of GRP94 on the endothelial cell surface is an effective strategy to suppress CRC tumor angiogenesis.


Subject(s)
Colorectal Neoplasms , Membrane Glycoproteins/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/pathology , HSP70 Heat-Shock Proteins , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Membrane Proteins/therapeutic use , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
12.
Anticancer Res ; 41(2): 671-678, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33517271

ABSTRACT

BACKGROUND/AIM: Hepatocyte growth factor (HGF) acts as a key regulator in promoting ovarian cancer metastasis. Previously, we observed that YYB-101, a humanized anti-HGF antibody, effectively inhibits ovarian cancer cell migration, invasion, and progression. Here, we evaluated the signaling mechanisms affected by YYB-101 that are important in ovarian cancer cell progression. MATERIALS AND METHODS: Using cell migration, invasion and proliferation assays, we evaluated the effects of YYB-101 on A2780/luc and SKOV3 cells. The effects of YYB-101 on signaling molecules were determined by immunocytochemistry and immunoblot analysis. RESULTS: YYB-101 inhibited HGF-induced ovarian cancer cell motility by down-regulating paxillin phosphorylation and actin-cytoskeleton rearrangement. Also, YYB-101 inhibited ovarian cancer cell proliferation by reducing c-MET phosphorylation and activating apoptosis in vitro and in vivo. These effects were significantly enhanced by combining YYB-101 treatment with paclitaxel, a standard chemotherapy drug. CONCLUSION: YYB-101 can be examined as a new therapeutic agent for the treatment of patients with ovarian cancer.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Cell Movement/drug effects , Cell Proliferation/drug effects , Hepatocyte Growth Factor/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Apoptosis/drug effects , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/pathology , Female , Hepatocyte Growth Factor/metabolism , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
13.
Int J Mol Sci ; 21(9)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384770

ABSTRACT

Antibody drug conjugates (ADCs), consisting of a cancer-specific antibody and cytotoxic payload, are shown to be a potent class of anticancer therapeutics, with enhanced therapeutic efficacy and reduced "off-target" side effects. However, the therapeutic window of ADCs is narrowed by problems such as difficulty in site-specific conjugation of payload, changes in antibody stability due to payload conjugation, and difficulty in tissue penetration. In this respect, aptamers have advantages in drug-delivery, as they can be easily and stably conjugated with cytotoxic drugs. We previously reported that oligobody, an aptamer-antibody complex, is a novel delivery method for aptamer-based therapeutics. In the current study, we describe DOligobody, a drug-conjugated oligobody comprising an aptamer-drug conjugate and an antibody. A cotinine-conjugated anti-HER2 aptamer (cot-HER2apt) was specifically bound to HER2-positive NCI-N87 cells, and underwent receptor-mediated endocytosis. Further, HER2-DOligobody, a cot-HER2apt-conjugated monomethyl auristatin E (cot-HER2apt-MMAE) oligobody, inhibited the growth of HER2-positive NCI-N87 cells. Finally, systemic administration of HER2-DOligobody significantly reduced tumor growth in a xenograft mouse model. Taken together, these results suggest that our DOligobody strategy may be a powerful platform for rapid, low-cost and effective cancer therapy.


Subject(s)
Immunoconjugates/therapeutic use , Mammary Neoplasms, Experimental/drug therapy , Receptor, ErbB-2/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Aptamers, Peptide/chemistry , Cell Line, Tumor , Cell Proliferation , Cotinine/chemistry , Endocytosis , Female , Humans , Immunoconjugates/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Oligopeptides/chemistry
14.
Biomolecules ; 10(3)2020 03 03.
Article in English | MEDLINE | ID: mdl-32138170

ABSTRACT

Tetraspanin 8 (TSPAN8) is a member of the tetraspanin superfamily that forms TSPAN8-mediated protein complexes by interacting with themselves and other various cellular signaling molecules. These protein complexes help build tetraspanin-enriched microdomains (TEMs) that efficiently mediate intracellular signal transduction. In physiological conditions, TSPAN8 plays a vital role in the regulation of biological functions, including leukocyte trafficking, angiogenesis and wound repair. Recently, reports have increasingly shown the functional role and clinical relevance of TSPAN8 overexpression in the progression and metastasis of several cancers. In this review, we will highlight the physiological and pathophysiological roles of TSPAN8 in normal and cancer cells. Additionally, we will cover the current status of monoclonal antibodies specifically targeting TSPAN8 and the importance of TSPAN8 as an emerging therapeutic target in cancers for monoclonal antibody therapy.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Neoplasm Proteins , Neoplasms , Tetraspanins , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Tetraspanins/antagonists & inhibitors , Tetraspanins/metabolism
15.
Biomolecules ; 9(11)2019 11 01.
Article in English | MEDLINE | ID: mdl-31683810

ABSTRACT

Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Cetuximab, a human/mouse chimeric monoclonal antibody, is effective in a limited number of CRC patients because of cetuximab resistance. This study aimed to identify novel therapeutic targets in cetuximab-resistant CRC in order to improve clinical outcomes. Through phage display technology, we isolated a fully human antibody strongly binding to the cetuximab-resistant HCT116 cell surface and identified the target antigen as glucose-regulated protein 94 (GRP94) using proteomic analysis. Short interfering RNA-mediated GRP94 knockdown showed that GRP94 plays a key role in HCT116 cell growth. In vitro functional studies revealed that the GRP94-blocking antibody we developed strongly inhibits the growth of various cetuximab-resistant CRC cell lines. We also demonstrated that GRP94 immunoglobulin G monotherapy significantly reduces HCT116 cell growth more potently compared to cetuximab, without severe toxicity in vivo. Therefore, cell surface GRP94 might be a potential novel therapeutic target in cetuximab-resistant CRC, and antibody-based targeting of GRP94 might be an effective strategy to suppress GRP94-expressing cetuximab-resistant CRC.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Cell Proliferation/drug effects , Colorectal Neoplasms/immunology , HSP70 Heat-Shock Proteins/immunology , Membrane Proteins/immunology , Animals , Cetuximab/administration & dosage , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/physiopathology , Drug Resistance, Neoplasm , HCT116 Cells , HSP70 Heat-Shock Proteins/genetics , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C
16.
Front Oncol ; 9: 571, 2019.
Article in English | MEDLINE | ID: mdl-31355133

ABSTRACT

Current chemotherapy regimens have certain limitations in improving the survival rates of patients with advanced ovarian cancer. Hepatocyte growth factor (HGF) is important in ovarian cancer cell migration and invasion. This study assessed the effects of YYB-101, a humanized monoclonal anti-HGF antibody, on the growth and metastasis of ovarian cancer cells. YYB-101 suppressed the phosphorylation of the HGF receptor c-MET and inhibited the migration and invasion of SKOV3 and A2780 ovarian cancer cells. Moreover, the combination of YYB-101 and paclitaxel synergistically inhibited tumor growth in an in vivo ovarian cancer mouse xenograft model and significantly increased the overall survival (OS) rate compared with either paclitaxel or YYB-101 alone. Taken together, these findings suggest that YYB-101 has therapeutic potential in ovarian cancer when combined with conventional chemotherapy agents.

17.
Cell Signal ; 44: 138-147, 2018 04.
Article in English | MEDLINE | ID: mdl-29329782

ABSTRACT

Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.


Subject(s)
Carcinoma, Ovarian Epithelial/pathology , Cytoskeletal Proteins/metabolism , Lysophospholipids/metabolism , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Ovarian Neoplasms/pathology , Receptors, Lysophosphatidic Acid/metabolism , Cell Line, Tumor , Cell Movement , Female , Humans , Phosphorylation , Signal Transduction , rhoA GTP-Binding Protein/metabolism
18.
Mol Oncol ; 12(3): 356-372, 2018 03.
Article in English | MEDLINE | ID: mdl-29316206

ABSTRACT

The C-type lectin-like domain of CLEC14a (CLEC14a-C-type lectin-like domain [CTLD]) is a key domain that mediates endothelial cell-cell contacts in angiogenesis. However, the role of CLEC14a-CTLD in pathological angiogenesis has not yet been clearly elucidated. In this study, through complementarity-determining region grafting, consecutive deglycosylation, and functional isolation, we generated a novel anti-angiogenic human monoclonal antibody that specifically targets CLEC14a-CTLD and that shows improved stability and homogeneity relative to the parental antibody. We found that this antibody directly inhibits CLEC14a-CTLD-mediated endothelial cell-cell contact and simultaneously downregulates expression of CLEC14a on the surface of endothelial cells. Using various in vitro and in vivo functional assays, we demonstrated that this antibody effectively suppresses vascular endothelial growth factor (VEGF)-dependent angiogenesis and tumor angiogenesis of SNU182 human hepatocellular carcinoma, CFPAC-1 human pancreatic cancer, and U87 human glioma cells. Furthermore, we also found that this antibody significantly inhibits tumor angiogenesis of HCT116 and bevacizumab-adapted HCT116 human colorectal cancer cells. These findings suggest that antibody targeting of CLEC14a-CTLD has the potential to suppress VEGF-dependent angiogenesis and tumor angiogenesis and that CLEC14a-CTLD may be a novel anti-angiogenic target for VEGF-dependent angiogenesis and tumor angiogenesis.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cell Adhesion Molecules/metabolism , Immunoglobulin G/pharmacology , Lectins, C-Type/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/metabolism , Animals , Antibodies, Monoclonal/immunology , Cell Adhesion Molecules/genetics , Cell Communication/drug effects , Cell Communication/immunology , Cell Line, Tumor , Female , HCT116 Cells , Human Umbilical Vein Endothelial Cells , Humans , Immunoglobulin G/immunology , Lectins, C-Type/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Pathologic/immunology , Neovascularization, Physiologic/immunology , Vascular Endothelial Growth Factor A/genetics , Xenograft Model Antitumor Assays
19.
Cancer Lett ; 414: 181-189, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29154973

ABSTRACT

Despite expressing high levels of the epidermal growth factor receptor (EGFR), a majority of oral squamous cell carcinoma (OSCC) patients show limited response to cetuximab and ultimately develop drug resistance. However, mechanism underlying cetuximab resistance in OSCC is not clearly understood. Here, using a mouse orthotopic xenograft model of OSCC, we show that bone morphogenic protein-7-phosphorylated Smad-1, -5, -8 (BMP7-p-Smad1/5/8) signaling contributes to cetuximab resistance. Tumor cells isolated from the recurrent cetuximab-resistant xenograft models exhibited low EGFR expression but extremely high levels of p-Smad1/5/8. Treatment with the bone morphogenic protein receptor type 1 (BMPRI) inhibitor, DMH1 significantly reduced cetuximab-resistant OSCC tumor growth, and combined treatment of DMH1 and cetuximab remarkably reduced relapsed tumor growth in vivo. Importantly, p-Smad1/5/8 level was elevated in cetuximab-resistant patients and this correlated with poor prognosis. Collectively, our results indicate that the BMP7-p-Smad1/5/8 signaling is a key pathway to acquired cetuximab resistance, and demonstrate that combination therapy of cetuximab and a BMP signaling inhibitor as potentially a new therapeutic strategy for overcoming acquired resistance to cetuximab in OSCC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Squamous Cell/drug therapy , Drug Resistance, Neoplasm/drug effects , Mouth Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Animals , Bone Morphogenetic Protein Receptors, Type I/antagonists & inhibitors , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone Morphogenetic Proteins/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cetuximab/administration & dosage , ErbB Receptors/metabolism , Humans , Mice, Nude , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Pyrazoles/administration & dosage , Quinolines/administration & dosage , Signal Transduction/drug effects , Smad Proteins/metabolism
20.
Sci Rep ; 7(1): 10666, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878328

ABSTRACT

CLEC14a (C-type lectin domain family 14 member) is a tumor endothelial cell marker protein that is known to play an important role in tumor angiogenesis, but the basic molecular mechanisms underlying this function have not yet been clearly elucidated. In this study, using various proteomic tools, we isolated a 70-kDa protein that interacts with the C-type lectin-like domain of CLEC14a (CLEC14a-CTLD) and identified it as heat shock protein 70-1A (HSP70-1A). Co-immunoprecipitation showed that HSP70-1A and CLEC14a interact on endothelial cells. In vitro binding analyses identified that HSP70-1A specifically associates with the region between amino acids 43 and 69 of CLEC14a-CTLD. Competitive blocking experiments indicated that this interacting region of CLEC14a-CTLD significantly inhibits HSP70-1A-induced extracellular signal-regulated kinase (ERK) phosphorylation and endothelial tube formation by directly inhibiting CLEC14a-CTLD-mediated endothelial cell-cell contacts. Our data suggest that the specific interaction of HSP70-1A with CLEC14a may play a critical role in HSP70-1A-induced angiogenesis and that the HSP70-1A-interacting region of CLEC14a-CTLD may be a useful tool for inhibiting HSP70-1A-induced angiogenesis.


Subject(s)
Cell Adhesion Molecules/metabolism , HSP70 Heat-Shock Proteins/metabolism , Lectins, C-Type/metabolism , Neovascularization, Pathologic/metabolism , Biomarkers , Cell Adhesion , Extracellular Signal-Regulated MAP Kinases , Human Umbilical Vein Endothelial Cells , Humans , Phosphorylation , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...