Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 16(6): 6119-23, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427680

ABSTRACT

We report the effect of zinc nitrate (ZN) concentration on the growth of zinc oxide (ZnO) nanorods and their optical and morphological properties. As prepared ZnO nanorods on glass substrate were characterized using field emission scanning electron microscopy (FE-SEM), ultra violet-visible (UV-Vis), Raman and Photo-luminescence (PL) spectroscopy. FE-SEM results show that the nanorods were obtained for the 0.033 and 0.053 M concentration of ZN. As the ZN concentration increased from 0.033 M to 0.053 M, the diameter of the nanorods was increased. It indicated that the diameter of the nanorods was affected by the ZN concentration. The Raman spectra of nanorods show only one peak at 438 cm(-1) corresponding to E2(high) high mode, which means that ZnO nanorods grown perpendicularly on the glass substrate, i.e., the ZnO nanorod arrays are highly c-axis oriented. Room-temperature PL spectrum of the as-grown ZnO nanorods reveals a near-band-edge (NBE) emission peak and defect induced green light emission. The green light emission band at -579 nm might be attributed to surface oxygen vacancies or defects. The UV-visible measurements reflect that the total transmittance for the as grown ZnO nanorods is over 80%. The simple technique presented in this study to grow ZnO nanorods on a glass substrate can be helpful for making the cost effective photovoltaic devices.

2.
J Nanosci Nanotechnol ; 16(6): 6555-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427752

ABSTRACT

This report is devoted to the synthesis of high quality nanorods using spin coating technique for seed layer growth. Effect of different parameter i.e., spins coating counts, spin coating speed, and the effect of temperature during the drying process was analyzed. Hot plate and furnace technique was used for heating purpose and the difference in the morphology was carefully observed. It is worthy to mention here that there is a substantial effect of all the above mentioned parameters on the growth and morphology of the ZnO nanostructure. The ZnO nanorods were finally synthesized using wet chemical method. The morphological properties of the obtained nanostructures were analyzed by using FESEM technique.

3.
J Nanosci Nanotechnol ; 12(7): 5464-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966591

ABSTRACT

We report the synthesis of pure and Mn doped ZnO in the form of nanosheets using a simple and single step procedure involving a microwave assisted chemical method. As prepared Mn-doped ZnO nanosheets were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible (UV-Vis), Raman spectroscopy and magnetization measurements. The structural studies using XRD and TEM revealed the absence of Mn-related secondary phases and showed that Mn-doped ZnO comprise a single phase nature with wurtzite structure. FESEM and TEM micrographs show that the average diameter of Mn-ZnO assembled nanosheets is about approximately 50 nm, and the length of a Mn-doped ZnO nanosheet building block which is made up of thin mutilayered sheets is around approximately 300 nm. Concerning the Raman scattering spectra, the shift in peak position of E2 (high) mode toward low frequencies due to the Mn doping could be explained well by means of the spatial correlation model. Magnetic measurements showed that Mn-doped ZnO nanosheets exhibit ferromagnetic ordering at or above room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...