Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Precis Oncol ; 8(1): 131, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877301

ABSTRACT

There has been a persistent demand for an innovative modality in real-time histologic imaging, distinct from the conventional frozen section technique. We developed an artificial intelligence-driven real-time evaluation model for gastric cancer tissue using confocal laser endomicroscopic system. The remarkable performance of the model suggests its potential utilization as a standalone modality for instantaneous histologic assessment and as a complementary tool for pathologists' interpretation.

2.
In Vivo ; 38(2): 855-863, 2024.
Article in English | MEDLINE | ID: mdl-38418139

ABSTRACT

BACKGROUND/AIM: The need for instant histological evaluation of fresh tissue, especially in cancer treatment, remains paramount. The conventional frozen section technique has inherent limitations, prompting the exploration of alternative methods. A recently developed confocal laser endomicroscopic system provides real-time imaging of the tissue without the need for glass slide preparation. Herein, we evaluated its applicability in the histologic evaluation of gastric cancer tissues. MATERIALS AND METHODS: A confocal laser endomicroscopic system (CLES) with a Lissajous pattern laser scanning, was developed. Fourteen fresh gastric cancer tissues and the same number of normal gastric tissues were obtained from advanced gastric cancer patients. Fluorescein sodium was used for staining. Five pathologists interpreted 100 endomicroscopic images and decided their histologic location and the presence of cancer. Following the review of matched hematoxylin and eosin (H&E) slides, their performance was evaluated with another 100 images. RESULTS: CLES images mirrored gastric tissue histology. Pathologists were able to detect the histologic location of the images with 65.7% accuracy and differentiate cancer tissue from normal with 74.7% accuracy. The sensitivity and specificity of cancer detection were 71.9% and 76.1%. Following the review of matched H&E images, the accuracy of identifying the histologic location was increased to 92.8% (p<0.0001), and that of detecting cancer tissue was also increased to 90.9% (p<0.001). The sensitivity and specificity of cancer detection were enhanced to 89.1% and 93.2% (p<0.0001). CONCLUSION: High-quality histological images were immediately acquired by the CLES. The operator training enabled the accurate detection of cancer and histologic location raising its potential applicability as a real-time tissue imaging modality.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology , Microscopy, Confocal/methods , Fluorescein , Eosine Yellowish-(YS) , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...