Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nature ; 626(7997): 45-57, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297170

ABSTRACT

The linear production and consumption of plastics today is unsustainable. It creates large amounts of unnecessary and mismanaged waste, pollution and carbon dioxide emissions, undermining global climate targets and the Sustainable Development Goals. This Perspective provides an integrated technological, economic and legal view on how to deliver a circular carbon and plastics economy that minimizes carbon dioxide emissions. Different pathways that maximize recirculation of carbon (dioxide) between plastics waste and feedstocks are outlined, including mechanical, chemical and biological recycling, and those involving the use of biomass and carbon dioxide. Four future scenarios are described, only one of which achieves sufficient greenhouse gas savings in line with global climate targets. Such a bold system change requires 50% reduction in future plastic demand, complete phase-out of fossil-derived plastics, 95% recycling rates of retrievable plastics and use of renewable energy. It is hard to overstate the challenge of achieving this goal. We therefore present a roadmap outlining the scale and timing of the economic and legal interventions that could possibly support this. Assessing the service lifespan and recoverability of plastic products, along with considerations of sufficiency and smart design, can moreover provide design principles to guide future manufacturing, use and disposal of plastics.


Subject(s)
Environmental Pollution , Goals , Plastics , Recycling , Sustainable Development , Biomass , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Environmental Pollution/economics , Environmental Pollution/legislation & jurisprudence , Environmental Pollution/prevention & control , Environmental Pollution/statistics & numerical data , Fossil Fuels , Global Warming/prevention & control , Greenhouse Gases/analysis , Plastics/chemical synthesis , Plastics/economics , Plastics/metabolism , Plastics/supply & distribution , Recycling/economics , Recycling/legislation & jurisprudence , Recycling/methods , Recycling/trends , Renewable Energy , Sustainable Development/economics , Sustainable Development/legislation & jurisprudence , Sustainable Development/trends , Technology/economics , Technology/legislation & jurisprudence , Technology/methods , Technology/trends
3.
Environ Sci Ecotechnol ; 8: 100130, 2021 Oct.
Article in English | MEDLINE | ID: mdl-36156997

ABSTRACT

China's 14th Five-Year Plan, for the period 2021-25, presents a real opportunity for China to link its long-term climate goals with its short-to medium-term social and economic development plans. China's recent commitment to achieving carbon neutrality by 2060 has set a clear direction for its economy, but requires ratcheting up ambition on its near-term climate policy. Against this background, this paper discusses major action areas for China's 14th Five-Year Plan after COVID-19, especially focusing on three aspects: the energy transition, a new type of sustainable urban development, and investment priorities. China's role in the world is now of a magnitude that makes its actions in the immediate future critical to how the world goes forward. This decade, 2021-2030, is of fundamental importance to human history. If society locks in dirty and high-carbon capital, it raises profound risks of irreversible damage to the world's climate. It is crucial for China to peak its emissions in the 14th Five-Year Plan (by 2025), making the transition earlier and cheaper, enhancing its international competitiveness in growing new markets and setting a strong example for the world. The benefits for China and the world as a whole could be immense.

5.
Nature ; 575(7781): 87-97, 2019 11.
Article in English | MEDLINE | ID: mdl-31695213

ABSTRACT

The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.


Subject(s)
Carbon Dioxide/economics , Carbon Dioxide/isolation & purification , Carbon Sequestration , Technology/economics , Technology/trends , Carbon Dioxide/metabolism , Charcoal/metabolism , Forests , Microalgae/metabolism , Photosynthesis , Soil/chemistry
9.
Philos Trans A Math Phys Eng Sci ; 371(1986): 20110565, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23359736

ABSTRACT

Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

10.
PLoS One ; 6(7): e21243, 2011.
Article in English | MEDLINE | ID: mdl-21799733

ABSTRACT

Farming of animals and plants has recently been considered not merely as a more efficient and plentiful supply of their products but also as a means of protecting wild populations from that trade. Amongst these nascent farming products might be listed bear bile. Bear bile has been exploited by traditional Chinese medicinalists for millennia. Since the 1980s consumers have had the options of: illegal wild gall bladders, bile extracted from caged live bears or the acid synthesised chemically. Despite these alternatives bears continue to be harvested from the wild. In this paper we use stated preference techniques using a random sample of the Chinese population to estimate demand functions for wild bear bile with and without competition from farmed bear bile. We find a willingness to pay considerably more for wild bear bile than farmed. Wild bear bile has low own price elasticity and cross price elasticity with farmed bear bile. The ability of farmed bear bile to reduce demand for wild bear bile is at best limited and, at prevailing prices, may be close to zero or have the opposite effect. The demand functions estimated suggest that the own price elasticity of wild bear bile is lower when competing with farmed bear bile than when it is the only option available. This means that the incumbent product may actually sell more items at a higher price when competing than when alone in the market. This finding may be of broader interest to behavioural economists as we argue that one explanation may be that as product choice increases price has less impact on decision making. For the wildlife farming debate this indicates that at some prices the introduction of farmed competition might increase the demand for the wild product.


Subject(s)
Bile Acids and Salts , Medicine, Chinese Traditional , Patient Preference/statistics & numerical data , Ursidae , Animals , China , Conservation of Natural Resources , Female , Income/statistics & numerical data , Linear Models , Male
11.
J Theor Biol ; 269(1): 166-73, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-20969881

ABSTRACT

Optimal control theory has been extensively used to determine the optimal harvesting policy for renewable resources such as fish stocks. In such optimisations, it is common to maximise the discounted utility of harvesting over time, employing a constant time discount rate. However, evidence from human and animal behaviour suggests that we have evolved to employ discount rates which fall over time, often referred to as "hyperbolic discounting". This increases the weight on benefits in the distant future, which may appear to provide greater protection of resources for future generations, but also creates challenges of time-inconsistent plans. This paper examines harvesting plans when the discount rate declines over time. With a declining discount rate, the planner reduces stock levels in the early stages (when the discount rate is high) and intends to compensate by allowing the stock level to recover later (when the discount rate will be lower). Such a plan may be feasible and optimal, provided that the planner remains committed throughout. However, in practice there is a danger that such plans will be re-optimized and adjusted in the future. It is shown that repeatedly restarting the optimization can drive the stock level down to the point where the optimal policy is to harvest the stock to extinction. In short, a key contribution of this paper is to identify the surprising severity of the consequences flowing from incorporating a rather trivial, and widely prevalent, "non-rational" aspect of human behaviour into renewable resource management models. These ideas are related to the collapse of the Peruvian anchovy fishery in the 1970's.


Subject(s)
Conservation of Natural Resources , Fisheries/methods , Fishes/growth & development , Animals , Computer Simulation , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...