Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 183(1): 568-77, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19542468

ABSTRACT

Both IL-23- and IL-1-mediated signaling pathways play important roles in Th17 cell differentiation, cytokine production, and autoimmune diseases. The IL-1R-associated kinase 4 (IRAK4) is critical for IL-1/TLR signaling. We show here that inactivation of IRAK4 kinase in mice (IRAK4 KI) results in significant resistance to experimental autoimmune encephalomyelitis due to a reduction in infiltrating inflammatory cells into the CNS and reduced Ag-specific CD4(+) T cell-mediated IL-17 production. Adoptive transfer of myelin oligodendrocyte glycoprotein 35-55-specific IRAK4 KI Th17 cells failed to induce experimental autoimmune encephalomyelitis in either wild-type or IRAK4 KI recipient mice, indicating the lack of autoantigen-specific Th17 cell activities in the absence of IRAK4 kinase activity. Furthermore, the absence of IRAK4 kinase activity blocked induction of IL-23R expression, STAT3 activation by IL-23, and Th17 cytokine expression in differentiated Th17 cells. Importantly, blockade of IL-1 signaling by IL-1RA inhibited Th17 differentiation and IL-23-induced cytokine expression in differentiated Th17 cells. The results of these studies demonstrate that IL-1-mediated IRAK4 kinase activity in T cells is essential for induction of IL-23R expression, Th17 differentiation, and autoimmune disease.


Subject(s)
Cell Differentiation/immunology , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/physiology , Interleukin-17/physiology , T-Lymphocytes, Helper-Inducer/enzymology , T-Lymphocytes, Helper-Inducer/immunology , Amino Acid Sequence , Animals , Cell Differentiation/genetics , Cell Migration Inhibition/genetics , Cell Migration Inhibition/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Enzyme Activation/genetics , Enzyme Activation/immunology , Female , Gene Knock-In Techniques , Glycoproteins/administration & dosage , Glycoproteins/antagonists & inhibitors , Immunity, Innate/genetics , Interleukin-1 Receptor-Associated Kinases/deficiency , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-17/antagonists & inhibitors , Interleukin-17/biosynthesis , Leukocytes, Mononuclear/enzymology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/pathology , Mice , Molecular Sequence Data , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments/administration & dosage , Peptide Fragments/antagonists & inhibitors , Signal Transduction/genetics , Signal Transduction/immunology , Spinal Cord/immunology , Spinal Cord/pathology , T-Lymphocytes, Helper-Inducer/pathology
2.
J Immunol ; 176(5): 2872-9, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16493044

ABSTRACT

The protein kinase C theta (PKC theta) serine/threonine kinase has been implicated in signaling of T cell activation, proliferation, and cytokine production. However, the in vivo consequences of ablation of PKC theta on T cell function in inflammatory autoimmune disease have not been thoroughly examined. In this study we used PKC theta-deficient mice to investigate the potential involvement of PKC theta in the development of experimental autoimmune encephalomyelitis, a prototypic T cell-mediated autoimmune disease model of the CNS. We found that PKC theta-/- mice immunized with the myelin oligodendrocyte glycoprotein (MOG) peptide MOG(35-55) were completely resistant to the development of clinical experimental autoimmune encephalomyelitis compared with wild-type control mice. Flow cytometric and histopathological analysis of the CNS revealed profound reduction of both T cell and macrophage infiltration and demyelination. Ex vivo MOG(35-55) stimulation of splenic T lymphocytes from immunized PKC theta-/- mice revealed significantly reduced production of the Th1 cytokine IFN-gamma as well as the T cell effector cytokine IL-17 despite comparable levels of IL-2 and IL-4 and similar cell proliferative responses. Furthermore, IL-17 expression was dramatically reduced in the CNS of PKC theta-/- mice compared with wild-type mice during the disease course. In addition, PKC theta-/- T cells failed to up-regulate LFA-1 expression in response to TCR activation, and LFA-1 expression was also significantly reduced in the spleens of MOG(35-55)-immunized PKC theta-/- mice as well as in in vitro-stimulated CD4+ T cells compared with wild-type mice. These results underscore the importance of PKC theta in the regulation of multiple T cell functions necessary for the development of autoimmune disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/enzymology , Interleukin-17/antagonists & inhibitors , Interleukin-17/biosynthesis , Isoenzymes/deficiency , Isoenzymes/genetics , Protein Kinase C/deficiency , Protein Kinase C/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Glycoproteins/immunology , Immunity, Innate/genetics , Interferon-gamma/biosynthesis , Isoenzymes/physiology , Lymphocyte Function-Associated Antigen-1/biosynthesis , Lymphocyte Function-Associated Antigen-1/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments/immunology , Protein Kinase C/physiology , Protein Kinase C-theta , Spleen/cytology , Spleen/immunology , Spleen/metabolism
3.
J Immunol ; 175(4): 2286-92, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16081797

ABSTRACT

Genetic disruption of death receptor 6 (DR6) results in enhanced CD4+ T cell expansion, Th2 differentiation, and humoral responses after stimulation. However, the in vivo consequences of DR6 targeting (DR6-/-) during the initiation and progression of inflammatory autoimmune disease are unclear. Using a myelin oligodendrocyte glycoprotein (MOG(35-55))-induced model of experimental autoimmune encephalomyelitis, DR6-/- mice were found to be highly resistant to both the onset and the progression of CNS disease compared with wild-type (WT) littermates. DR6-/- mice exhibited fewer inflammatory foci along with minimal demyelination and perivascular cuffing of inflammatory cells. Consistent with these observations, mononuclear cell infiltration, including CD4+ T cells and macrophages, in the spinal cord of DR6-/- mice was dramatically reduced. Furthermore, CD4+ T cells from DR6-/- mice exhibited profoundly reduced cell surface expression of VLA-4 before and after stimulation. Compared with WT mice, DR6-/- mice exhibited significantly increased autoantigen-induced T cell proliferative responses along with greater numbers of IL-4-producing and similar or slightly higher numbers of IFN-gamma-producing CD4+ T cells. DR6-/- CD4+ T cells secreted higher levels of the Th2 cytokine, IL-4, and similar levels of the Th1 cytokine, IFN-gamma, compared with WT cells. Taken together, our data demonstrate that DR6 plays an important role in regulating leukocyte infiltration and function in the induction and progression of experimental autoimmune encephalomyelitis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Glycoproteins/administration & dosage , Glycoproteins/immunology , Peptide Fragments/administration & dosage , Peptide Fragments/immunology , Receptors, Tumor Necrosis Factor/deficiency , Receptors, Tumor Necrosis Factor/genetics , Amino Acid Sequence , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/transplantation , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Membrane/pathology , Cell Movement/genetics , Cell Movement/immunology , Cell Proliferation , Cells, Cultured , Down-Regulation/genetics , Down-Regulation/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Epitopes, T-Lymphocyte/immunology , Female , Immunity, Innate/genetics , Immunization, Passive , Integrin alpha4beta1/antagonists & inhibitors , Integrin alpha4beta1/biosynthesis , Interleukin-4/biosynthesis , Lymphocyte Activation/genetics , Lymphocyte Count , Mice , Mice, Knockout , Molecular Sequence Data , Myelin-Oligodendrocyte Glycoprotein , Receptors, Tumor Necrosis Factor/physiology , Spleen/cytology , Spleen/immunology , Spleen/metabolism , Up-Regulation/genetics , Up-Regulation/immunology
4.
J Neurosci ; 25(3): 629-36, 2005 Jan 19.
Article in English | MEDLINE | ID: mdl-15659599

ABSTRACT

Passive immunization with an antibody directed against the N terminus of amyloid beta (Abeta) has recently been reported to exacerbate cerebral amyloid angiopathy (CAA)-related microhemorrhage in a transgenic animal model. Although the mechanism responsible for the deleterious interaction is unclear, a direct binding event may be required. We characterized the binding properties of several monoclonal anti-Abeta antibodies to deposited Abeta in brain parenchyma and CAA. Biochemical analyses demonstrated that the 3D6 and 10D5, two N-terminally directed antibodies, bound with high affinity to deposited forms of Abeta, whereas 266, a central domain antibody, lacked affinity for deposited Abeta. To determine whether 266 or 3D6 would exacerbate CAA-associated microhemorrhage, we treated aged PDAPP mice with either antibody for 6 weeks. We observed an increase in both the incidence and severity of CAA-associated microhemorrhage when PDAPP transgenic mice were treated with the N-terminally directed 3D6 antibody, whereas mice treated with 266 were unaffected. These results may have important implications for future immune-based therapeutic strategies for Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/immunology , Cerebral Amyloid Angiopathy/immunology , Cerebral Hemorrhage/immunology , Immunization, Passive/adverse effects , Aging/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Antibody Affinity , Cerebral Amyloid Angiopathy/metabolism , Cerebral Hemorrhage/metabolism , Female , Male , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...