Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 255: 107017, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152439

ABSTRACT

To mitigate the effects following a large-scale nuclear or radiological material release in an urban environment and to expedite recovery, the Integrated Wash-Aid Treatment Emergency Reuse System (IWATERS) was developed. IWATERS consists of three operations: washing contaminated surfaces with an ionic wash solution, collecting, and treating the contaminated wash solution on-site to remove contaminants, and reusing the treated solution throughout operations to preserve the clean water resource. This study develops a framework to simulate the logistics of IWATERS deployment, thereby gaining an understanding of the timeline for decontamination operations. For this purpose, the Analysis of Mobility Platform and GoldSim were leveraged for a hypothetical contamination scenario covering 65,200 m2 of an urban center. The framework reveals that remediation progress is limited by several resources, notably the availability of vermiculite, a reactive clay that is required to treat the contaminated wash solution. This study also presents how the simulation approach can be used to characterize alternatives to reduce the influence of limited resources on operational progress. Overall, this work lays the foundation for evaluating different decontamination methods through detailed logistics simulation, i.e., by refining simulation assumptions and expanding the range of scenarios the simulation can depict.


Subject(s)
Radiation Monitoring , Clay
2.
Health Phys ; 120(6): 591-599, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33577222

ABSTRACT

ABSTRACT: The common radionuclide 137Cs is a gamma-ray source term for nuclear reactor accidents, nuclear detonations, and potential radionuclide dispersal devices. For wide-area contamination events, one remediation option integrates water washing activities with on-site treatment of water for its immediate reuse. This remediation option includes washing building and roadways via firehose, collecting the wash water, and passing the contaminated water through chemical filtration beds. The primary objective of this study was to quantify the dose incurred to workers performing a remediation recovery effort for roadways and buildings following a wide-area release event. MicroShield® was employed to calculate the dose to workers at the roadway level and to calculate total dose rates while performing washing activities. This study finds that for a realistic contamination scenario for a wide area of a large urban environment, decontamination crews would be subjected to <220 µSv per person, much less than the 50,000 µSv limit for occupational dose. By extrapolation, one decontamination team of 48 people could continue washing operations on a total of 2.8 km2 before reaching their incurred annual dose limits. Though it is unrealistic to assign one team that entire area, we can conclude external dose will not limit worker deployment given the range of contamination levels adopted in this study.


Subject(s)
Cesium Radioisotopes , Radioactive Hazard Release , Humans
3.
Environ Technol Innov ; 21: 1-11, 2021 Feb.
Article in English | MEDLINE | ID: mdl-35586272

ABSTRACT

Enhancing rapid remediation strategies is paramount for recovery after a large-scale nuclear contamination event in an urban environment. Some current strategies recommend use of readily available equipment, materials, and facilities to expedite recovery. For example, applying pressurized water to contaminated surfaces may effectively remove radioactive contamination. In this study, a commercial power washer removes soluble forms of 152Eu3+, 85Sr2+, and 137Cs+ contamination from common porous building materials, and computer simulations characterize the recycling of the resultant contaminated wash water. Pressure washing the porous building materials under spray conditions typical with do-it-yourself units improved decontamination factors (DFs) for 152Eu compared to low-pressure application of tap water (majority of two-tailed t-test p-values < 0.1), but pressure did not improve DFs for 137Cs or 85Sr. For both pressurized and low-pressure applications, adding potassium ions (K+) to promote ion exchange reactions produced significantly higher DFs for tested radionuclides on asphalt, brick, and concrete. The resultant contaminated wash water can be processed through self-prepared chemical filtration beds of clay and sand. Modeled in a prior study, the beds yielded linear trends (R2 > 0.98) in sensitivity analyses between most bed configuration variables and bed performance variables, permitting flexible ad-hoc bed design. The experimental and simulation results led to estimates of the remediation rate and waste generated after cleaning 250 m2 of cesium-contaminated concrete from the combined deployment of a power washer and two different mobile treatment beds. The first treatment bed was designed to reduce treatment time and processed 1900 L of wash solution in 70 min using 880 kg of clay/sand infill material. Designed to reduce the solid waste generated, the second bed processed the same solution volume in 1040 min (17 h) using 170 kg of clay/sand infill material. The results of this analysis warrant further investigation of power washing with recycled salt solution as an effective rapid decontamination method with manageable waste.

SELECTION OF CITATIONS
SEARCH DETAIL
...