Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(2): 2511-2520, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066267

ABSTRACT

We seek to understand how copper and cadmium act on leaf litter decomposition by their effects on microbial conditioning and litter fragmentation by invertebrates. In this study, we evaluated, in an integrated manner, different biological elements responsible for functioning of streams. Thus, we performed a microcosm assay with different concentrations for the two metals and their combination, evaluating their effects on fungi sporulation rate, consumption rate by shredders, and, consequently, the leaf litter decomposition rates. Sporulation rates were affected by all copper concentrations tested 10 × = 16 µg L-1 and 25 × = 40 µg L-1) but significantly reduced only at the highest concentration of cadmium (25 × = 22.5 µg L-1). Increased copper and cadmium concentrations reduced the consumption of leaf litter by Phylloicus at 60%. The concentrations (10 × and 25 ×) of both metals resulted in a reduction in decomposition rates. When combined, copper and cadmium negatively affected microbial conditioning, consumption by shredders, and leaf litter decomposition. Increases in concentrations of copper and cadmium directly affected organic matter decomposition in aquatic environments. Thus, the presence of a high concentration of heavy metals in aquatic environments alters the functioning of ecosystems. As trace-elements occur in a combined manner in environments, our results show that the combined effects of different metals potentiate the negative effects on ecosystem processes.


Subject(s)
Ecosystem , Rivers , Rivers/microbiology , Copper , Cadmium , Metals , Plant Leaves/microbiology
2.
Environ Monit Assess ; 193(4): 215, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33759031

ABSTRACT

In regions with intense agricultural activity, increases in heavy metal concentrations in aquatic environments are common. Among the metals associated with agricultural activities, copper (Cu) and cadmium (Cd) have been found to directly affect aquatic trophic structures due to the ease of incorporation by primary producers and consuming organisms. Aquatic insects are predominantly found in streams, and their presence is determined by environmental characteristics and food availability. In this study, we seek to understand how the incorporation of Cu and Cd by scraper insects relates to their environment and food sources. We collected water, sediment, biofilm and scraper insect samples in streams with different intensities of agricultural activities in the drainage areas. The intensity of agricultural activities in the catchment area positively influenced the Cu and Cd concentrations in organisms and other aquatic compartments. The metals were readily incorporated by the biofilms. Although the functional characteristics are important to understand the functioning of ecosystems, in this study, we found that the physiological characteristics can be determinants in the concentrations of metals in aquatic insects.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Cadmium , Copper/analysis , Ecosystem , Environmental Monitoring , Insecta , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
3.
PLoS One ; 11(9): e0161082, 2016.
Article in English | MEDLINE | ID: mdl-27584726

ABSTRACT

Turnover (i.e., species substitution) and nestedness (i.e., subsets of species from more diverse locations), the two main mechanisms used to explain the beta diversity of biological communities, have different implications for biodiversity conservation. To better understand how these mechanisms contribute to beta diversity, we tested the following hypotheses: (i) greater dissimilarity in community composition occurs between estuarine zones than other hierarchical level studied; (ii) beta diversity in these communities develops by turnover in estuaries with a lower degree of anthropogenic impact, but by nestedness in estuaries with a greater degree of anthropogenic impact; and (iii) the structuring mechanism is independent of season. We studied two tropical estuaries (dry and wet seasons) that vary in terms of land-use of the drainage basins. Subtidal benthic macroinvertebrates were sampled along the estuarine gradient in each of the two estuaries. The additive partitioning approach to species diversity was used to determine the hierarchical scale with the greatest dissimilarity in community composition. General beta diversity was measured using the Sorensen dissimilarity index, partitioning the turnover and nestedness components. The greatest dissimilarity in the composition of the communities occurred between the zones along the estuarine gradient in both seasons (dry = 58.6%; wet = 46.3%). In the estuary with a lower degree of anthropogenic influence, benthic macroinvertebrate diversity was generated by turnover regardless of the season. In the estuary with a greater degree of anthropogenic impact, beta diversity was structured by turnover during the dry season and a combination of both mechanisms during the wet season. We conclude that turnover is the principal mechanism responsible for beta diversity in benthic macroinvertebrate communities in tropical estuaries.


Subject(s)
Estuaries , Tropical Climate , Animals , Biodiversity , Seasons
4.
Environ Monit Assess ; 157(1-4): 305-18, 2009 Oct.
Article in English | MEDLINE | ID: mdl-18843547

ABSTRACT

Different land uses affect the characteristics of a hydrographic basin, reflected in the river water quality, and consequently affecting the aquatic biota. The benthic community closely reflects the alterations caused by different human activities. In this study, the effects of different land uses were evaluated by analysis of the benthic community structure in streams with urban, agricultural and pasturage influences, as well as areas in better-conserved regions. The abiotic parameters showed distinct seasonal variability, which did not occur with the benthic organisms. A degradation gradient was observed among the study sites, in the headwaters-agriculture-pasture-urban direction. By the CCA its possible to observe that the density of organisms tended to increase along this gradient, whereas richness, diversity, evenness, and EPT families decreased. The most intense effects of land use on the benthic community composition, richness, and diversity were observed in urban areas (F (1,4) = 16.0, p = 0.01; F (1,4) = 8.97, p = 0.04; respectively). In conclusion a trend in the benthic community is observed in to predict alterations caused for the different land uses, mainly, when the source point pollution, as the case of urban area.


Subject(s)
Invertebrates/classification , Rivers/chemistry , Water Pollutants/analysis , Agriculture , Animals , Biodiversity , Brazil , Calcium/analysis , Enterobacteriaceae/isolation & purification , Environmental Monitoring , Geography , Hydrogen-Ion Concentration , Invertebrates/growth & development , Invertebrates/metabolism , Magnesium/analysis , Nitrites/analysis , Oxygen/analysis , Phosphorus/analysis , Quaternary Ammonium Compounds/analysis , Rivers/microbiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...