Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomarkers ; 14(5): 278-84, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19476410

ABSTRACT

Myosmine is a minor tobacco alkaloid with widespread occurrence in the human diet. Myosmine is genotoxic in human cells and is readily nitrosated and peroxidated yielding reactive intermediates with carcinogenic potential. For biomonitoring of short-term and long-term exposure, analytical methods were established for determination of myosmine together with nicotine and cotinine in plasma, saliva and toenail by gas chromatography-mass spectrometry (GC/MS). Validation of the method with samples of 14 smokers and 10 non-smokers showed smoking-dependent differences of myosmine in toenails (66 +/- 56 vs 21 +/- 15 ng g(-1), p <0.01) as well as saliva (2.54 +/- 2.68 vs 0.73 +/- 0.65 ng ml(-1), p <0.01). However, these differences were much smaller than those with nicotine (1971 +/- 818 vs 132 +/- 82 ng g(-1), p <0.0001) and cotinine (1237 +/- 818 vs <35 ng g(-1)) in toenail and those of cotinine (97.43 +/- 84.54 vs 1.85 +/- 4.50 ng ml(-1), p <0.0001) in saliva. These results were confirmed in plasma samples from 84 patients undergoing gastro-oesophageal endoscopy. Differences between 25 smokers and 59 non-smokers are again much lower for myosmine (0.30 +/- 0.35 vs 0.16 +/- 0.18 ng ml(-1), p <0.05) than for cotinine (54.67 +/- 29.63 vs 0.61 +/- 1.82 ng ml(-1), p <0.0001). In conclusion, sources other than tobacco contribute considerably to the human body burden of myosmine.


Subject(s)
Alkaloids/analysis , Cotinine/analysis , Gas Chromatography-Mass Spectrometry/methods , Nails/chemistry , Nicotine/analysis , Saliva/chemistry , Alkaloids/chemistry , Animals , Cattle , Endoscopy, Gastrointestinal , Esophagoscopy , Female , Humans , Male , Molecular Structure , Smoke , Nicotiana/chemistry
2.
Anal Bioanal Chem ; 393(5): 1525-30, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19104779

ABSTRACT

4-Hydroxy-1-(3-pyridyl)-1-butanone (HPB)-releasing DNA adducts are formed by metabolic activation of the tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). NNK and NNN are considered carcinogenic to humans by the International Agency for Research on Cancer. Existing analytical methods for determination of HPB-releasing DNA adducts require 0.3-2.0 g of human target tissues such as lung and esophagus. For adduct determination in milligram amounts of biopsy samples, an ultrasensitive and specific method is presented using capillary gas chromatography coupled to a high-resolution mass spectrometer operated in the negative chemical ionization mode (GC-NCI-HRMS). The method has a limit of detection of 4.6 fmol HPB, a limit of quantification of 14.9 fmol HBP and a recovery of 45 +/- 15%. Intra- and inter-day imprecision for N = 6 samples were calculated with coefficients of variation of <3.1%. Method applicability was evaluated with biopsies of esophageal mucosa (N = 14) yielding 5.6 +/- 1.9 mg tissue and a mean adduct level of 6.13 +/- 9.35 pmol HPB/mg DNA.


Subject(s)
Butanones/analysis , DNA Adducts/analysis , Esophagus/metabolism , Gas Chromatography-Mass Spectrometry , Mucous Membrane/metabolism , Pyridines/analysis , Adult , Aged , Biopsy , Butanones/metabolism , DNA Adducts/metabolism , Female , Humans , Male , Middle Aged , Pyridines/metabolism
3.
J Agric Food Chem ; 53(20): 7925-30, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16190651

ABSTRACT

The delta15N(AIR) and delta2H(VSMOW) data for several alkylpyrazines formed during the roasting process of coffee are reported. Samples of commercially available roasted (n = 9) as well as self-roasted (n = 8) coffee beans (Coffea arabica L. and Coffea canephora var. robusta) of different origins were investigated. By use of extracts prepared by simultaneous distillation extraction (SDE) and subsequently fractionated by liquid chromatography on silica gel, on-line capillary gas chromatography-isotope ratio mass spectrometry was employed in the combustion (C) and pyrolysis (P) modes (HRGC-C/P-IRMS) to determine the delta15N(AIR) and delta2H(VSMOW) values, respectively. In addition to the constituents of coffee beans, data for commercial synthetic alkylpyrazines and substances declared to be "natural" were determined. The delta15N(AIR) data for coffee alkylpyrazines under study-2-ethyl-5-methylpyrazine (1) and 2-ethyl-6-methylpyrazine (2) (measured as sum 1/2), 2-ethyl-3-methylpyrazine (3), 2-methylpyrazine (4), 2,5-dimethylpyrazine (5) and 2,6-dimethylpyrazine (6) (measured as sum 5/6), and 2,3-dimethylpyrazine (7), as well as 2,3,5-trimethylpyrazine (8)-varied in the range from +8.3 to -10.2 per thousand, thus revealing their biogeneration from amino acids (delta15N(AIR) ranging from +8 per thousand to -10 per thousand). The delta2H(VSMOW) values were determined in the range from -5 per thousand to -127 per thousand. Owing to the analytical differentiation observed between coffee alkylpyrazines and synthetic/"natural" samples of 3, 4, and 7, authenticity assessment of coffee-flavored products seems to be promising, provided that extended data will be available in the future. In the literature, there were no IRMS data available for the alkylpyrazines (1-8) under study.


Subject(s)
Coffea/chemistry , Mass Spectrometry/methods , Pyrazines/analysis , Seeds/chemistry , Deuterium/analysis , Nitrogen/analysis , Nitrogen Isotopes/analysis , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...