Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 4768, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362888

ABSTRACT

Bariatric surgeries such as the Vertical Sleeve Gastrectomy (VSG) are invasive but provide the most effective improvements in obesity and Type 2 diabetes. We hypothesized a potential role for the gut hormone Fibroblast-Growth Factor 15/19 which is increased after VSG and pharmacologically can improve energy homeostasis and glucose handling. We generated intestinal-specific FGF15 knockout (FGF15INT-KO) mice which were maintained on high-fat diet. FGF15INT-KO mice lost more weight after VSG as a result of increased lean tissue loss. FGF15INT-KO mice also lost more bone density and bone marrow adipose tissue after VSG. The effect of VSG to improve glucose tolerance was also absent in FGF15INT-KO. VSG resulted in increased plasma bile acid levels but were considerably higher in VSG-FGF15INT-KO mice. These data point to an important role after VSG for intestinal FGF15 to protect the organism from deleterious effects of VSG potentially by limiting the increase in circulating bile acids.


Subject(s)
Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Gastrectomy/adverse effects , Adipose Tissue , Animals , Bariatric Surgery , Bile Acids and Salts/blood , Blood Glucose , Bone Density , Bone Marrow , Diabetes Mellitus, Type 2 , Diet, High-Fat , Disease Models, Animal , Glucose Tolerance Test , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/surgery , Weight Loss
2.
Mol Metab ; 26: 18-29, 2019 08.
Article in English | MEDLINE | ID: mdl-31230943

ABSTRACT

OBJECTIVE: Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system. METHODS: Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12-16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry. RESULTS: CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight. CONCLUSIONS: We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Serine Endopeptidases/metabolism , Animals , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/chemically induced , Reelin Protein
3.
Diabetes ; 67(9): 1720-1728, 2018 09.
Article in English | MEDLINE | ID: mdl-30135133

ABSTRACT

Bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective interventions available for sustained weight loss and improved glucose metabolism. Bariatric surgery alters the enterohepatic bile acid circulation, resulting in increased plasma bile levels as well as altered bile acid composition. While it remains unclear why both VSG and RYGB can alter bile acids, it is possible that these changes are important mediators of the effects of surgery. Moreover, a molecular target of bile acid synthesis, the bile acid-activated transcription factor FXR, is essential for the positive effects of VSG on weight loss and glycemic control. This Perspective examines the relationship and sequence of events between altered bile acid levels and composition, FXR signaling, and gut microbiota after bariatric surgery. We hypothesize that although bile acids and FXR signaling are potent mediators of metabolic function, unidentified downstream targets are the main mediators behind the benefits of weight-loss surgery. One of these targets, the gut-derived peptide FGF15/19, is a potential molecular and therapeutic marker to explain the positive metabolic effects of bariatric surgery. Focusing research efforts on identifying these complex molecular mechanisms will provide new opportunities for therapeutic strategies to treat obesity and metabolic dysfunction.


Subject(s)
Fibroblast Growth Factors/antagonists & inhibitors , Hypoglycemic Agents/therapeutic use , Metabolic Diseases/drug therapy , Models, Biological , Obesity, Morbid/physiopathology , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Bariatric Surgery/adverse effects , Bile Acids and Salts/metabolism , Combined Modality Therapy/adverse effects , Enterohepatic Circulation/drug effects , Fibroblast Growth Factors/agonists , Fibroblast Growth Factors/metabolism , Gastrointestinal Microbiome , Humans , Liver/drug effects , Liver/metabolism , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Metabolic Diseases/microbiology , Molecular Targeted Therapy/adverse effects , Obesity, Morbid/metabolism , Obesity, Morbid/surgery , Obesity, Morbid/therapy , Organ Specificity , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism
4.
Int J Obes (Lond) ; 42(6): 1151-1160, 2018 06.
Article in English | MEDLINE | ID: mdl-29892039

ABSTRACT

OBJECTIVE: Administration of FGF21 and FGF21 analogues reduce body weight; improve insulin sensitivity and dyslipidemia in animal models of obesity and in short term clinical trials. However potential adverse effects identified in mice have raised concerns for the development of FGF21 therapeutics. Therefore, this study was designed to address the actions of FGF21 on body weight, glucose and lipid metabolism and importantly its effects on bone mineral density (BMD), bone markers, and plasma cortisol in high-fat fed obese rhesus macaque monkeys. METHODS: Obese non-diabetic rhesus macaque monkeys (five males and five ovariectomized (OVX) females) were maintained on a high-fat diet and treated for 12 weeks with escalating doses of FGF21. Food intake was assessed daily and body weight weekly. Bone mineral content (BMC) and BMD were measured by DEXA scanning prior to the study and on several occasions throughout the treatment period as well as during washout. Plasma glucose, glucose tolerance, insulin, lipids, cortisol, and bone markers were likewise measured throughout the study. RESULTS: On average, FGF21 decreased body weight by 17.6 ± 1.6% after 12 weeks of treatment. No significant effect on food intake was observed. No change in BMC or BMD was observed, while a 2-fold increase in CTX-1, a marker of bone resorption, was seen. Overall glucose tolerance was improved with a small but significant decrease in HbA1C. Furthermore, FGF21 reduced concentrations of plasma triglycerides and very low density lipoprotein cholesterol. No adverse changes in clinical chemistry markers were demonstrated, and no alterations in plasma cortisol were observed during the study. CONCLUSION: In conclusion, FGF21 reduced body weight in obese rhesus macaque monkeys without reducing food intake. Furthermore, FGF21 had beneficial effects on body composition, insulin sensitivity, and plasma triglycerides. No adverse effects on bone density or plasma cortisol were observed after 12 weeks of treatment.


Subject(s)
Anti-Obesity Agents/pharmacology , Eating/drug effects , Energy Metabolism/drug effects , Fibroblast Growth Factors/pharmacology , Obesity/drug therapy , Weight Loss/drug effects , Animals , Anti-Obesity Agents/administration & dosage , Blood Glucose , Bone Density/drug effects , Diet, High-Fat , Disease Models, Animal , Dose-Response Relationship, Drug , Eating/physiology , Energy Metabolism/physiology , Fibroblast Growth Factors/administration & dosage , Glucose Tolerance Test , Hydrocortisone/blood , Macaca mulatta , Obesity/metabolism , Weight Loss/physiology
5.
eNeuro ; 4(1)2017.
Article in English | MEDLINE | ID: mdl-28144621

ABSTRACT

Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9-39), in ad libitum-fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Fasting/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Kisspeptins/metabolism , Luteinizing Hormone/blood , Neurons/metabolism , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/drug effects , Brain Stem/cytology , Brain Stem/drug effects , Brain Stem/metabolism , Drug Implants , Eating/physiology , Estradiol/administration & dosage , Estrogens/administration & dosage , Female , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Glucagon-Like Peptides/metabolism , Luteinizing Hormone/antagonists & inhibitors , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice, Inbred C57BL , Neurons/cytology , Neurons/drug effects , Ovariectomy , RNA, Messenger/metabolism , Signal Transduction/drug effects , Tissue Culture Techniques
6.
Nat Commun ; 7: 10782, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923837

ABSTRACT

Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment.


Subject(s)
Hypothalamus/metabolism , Leptin/metabolism , Animals , Blood Glucose , Cell Line , Gene Expression Regulation , Gene Knockdown Techniques , Glucose Tolerance Test , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Infusions, Intraventricular , Insulin Resistance , Laser Capture Microdissection , Leptin/genetics , Male , Melanocyte-Stimulating Hormones/pharmacology , Mice , Mice, Inbred Strains , Mice, Knockout , Neurons/physiology , Rats , Rats, Wistar
7.
Diabetologia ; 58(9): 2124-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26049402

ABSTRACT

AIMS/HYPOTHESIS: We assessed the contribution of glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) signalling to thermogenesis induced by high-fat diet (HFD) consumption. Furthermore, we determined whether brown adipose tissue (BAT) activity contributes to weight loss induced by chronic subcutaneous treatment with the GLP-1R agonist, liraglutide, in a model of diet-induced obesity. METHODS: Metabolic phenotyping was performed using indirect calorimetry in wild-type (WT) and Glp1r-knockout (KO) mice during chow and HFD feeding at room temperature and at thermoneutrality. In a separate study, we investigated the contribution of BAT thermogenic capacity to the weight lowering effect induced by GLP-1 mimetics by administering liraglutide (10 or 30 nmol kg(-1) day(-1) s.c.) to diet-induced obese (DIO) mice for 6 or 4 weeks, respectively. In both studies, animals were subjected to a noradrenaline (norepinephrine)-stimulated oxygen consumption [Formula: see text] test. RESULTS: At thermoneutrality, HFD-fed Glp1r-KO mice had similar energy expenditure (EE) compared with HFD-fed WT controls. However, HFD-fed Glp1r-KO mice exhibited relatively less EE when housed at a cooler standard room temperature, and had relatively lower [Formula: see text] in response to a noradrenaline challenge, which is consistent with impaired BAT thermogenic capacity. In contrast to the loss of function model, chronic peripheral liraglutide treatment did not increase BAT activity as determined by noradrenaline-stimulated [Formula: see text] and BAT gene expression. CONCLUSIONS/INTERPRETATION: These data suggest that although endogenous GLP-1R signalling contributes to increased BAT thermogenesis, this mechanism does not play a significant role in the food intake-independent body weight lowering effect of the GLP-1 mimetic liraglutide in DIO mice.


Subject(s)
Adipose Tissue, Brown/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Animals , Body Composition , Calorimetry, Indirect , Diet , Diet, High-Fat , Eating , Energy Metabolism/physiology , Liraglutide/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Norepinephrine/chemistry , Oxygen Consumption , Phenotype , Signal Transduction , Temperature , Thermogenesis
8.
Front Neurosci ; 9: 92, 2015.
Article in English | MEDLINE | ID: mdl-25852463

ABSTRACT

Glucagon-like peptide-1 (GLP-1) enhances meal-related insulin secretion, which lowers blood glucose excursions. In addition to its incretin action, GLP-1 acts on the GLP-1 receptor (GLP-1R) in the brain to suppress feeding. These combined actions of GLP-1R signaling cause improvements in glycemic control as well as weight loss in type II diabetes (T2DM) patients treated with GLP-1R agonists. This is a superior advantage of GLP-1R pharmaceuticals as many other drugs used to treat T2DM are weight neutral or actual cause weight gain. This review summarizes GLP-1R action on energy and glucose metabolism, the effectiveness of current GLP-1R agonists on weight loss in T2DM patients, as well as GLP-1R combination therapies.

9.
Endocrinology ; 156(5): 1714-23, 2015 May.
Article in English | MEDLINE | ID: mdl-25751638

ABSTRACT

Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.


Subject(s)
Adiposity , Brain/metabolism , Energy Metabolism/genetics , Feeding Behavior/physiology , Ghrelin/metabolism , Obesity/genetics , Receptors, Ghrelin/metabolism , Tachykinins/genetics , Animals , Diet, High-Fat , Energy Metabolism/drug effects , Feeding Behavior/drug effects , Female , Gene Expression Profiling , Male , Mice , Obesity/metabolism , Polymerase Chain Reaction , RNA, Messenger/metabolism , Rats , Tachykinins/metabolism , Tachykinins/pharmacology
10.
Endocrinology ; 156(1): 255-67, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25380238

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is released from endocrine L-cells lining the gut in response to food ingestion. However, GLP-1 is also produced in the nucleus of the solitary tract, where it acts as an anorectic neurotransmitter and key regulator of many autonomic and neuroendocrine functions. The expression and projections of GLP-1-producing neurons is highly conserved between rodent and primate brain, although a few key differences have been identified. The GLP-1 receptor (GLP-1R) has been mapped in the rodent brain, but no studies have described the distribution of GLP-1Rs in the nonhuman primate central nervous system. Here, we characterized the distribution of GLP-1R mRNA and protein in the adult macaque brain using in situ hybridization, radioligand receptor autoradiography, and immunohistochemistry with a primate specific GLP-1R antibody. Immunohistochemistry demonstrated that the GLP-1R is localized to cell bodies and fiber terminals in a very selective distribution throughout the brain. Consistent with the functional role of the GLP-1R system, we find the highest concentration of GLP-1R-immunoreactivity present in select hypothalamic and brainstem regions that regulate feeding, including the paraventricular and arcuate hypothalamic nuclei, as well as the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Together, our data demonstrate that GLP-1R distribution is highly conserved between rodent and primate, although a few key species differences were identified, including the amygdala, where GLP-1R expression is much higher in primate than in rodent.


Subject(s)
Brain/metabolism , RNA, Messenger/metabolism , Receptors, Glucagon/metabolism , Animals , Antibodies , Antibody Specificity , Gene Expression Regulation/physiology , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , In Situ Hybridization , Macaca mulatta , Male , Protein Binding , RNA, Messenger/genetics , Receptors, Glucagon/genetics , Tissue Distribution
11.
Eur J Endocrinol ; 171(1): R21-32, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24714083

ABSTRACT

Ghrelin is a 28-amino acid peptide secreted mainly from the X/A-like cells of the stomach. Ghrelin is found in circulation in both des-acyl (dAG) and acyl forms (AG). Acylation is catalyzed by the enzyme ghrelin O-acyltransferase (GOAT). AG acts on the GH secretagogue receptor (GHSR) in the CNS to promote feeding and adiposity and also acts on GHSR in the pancreas to inhibit glucose-stimulated insulin secretion. These well-described actions of AG have made it a popular target for obesity and type 2 diabetes mellitus pharmacotherapies. However, despite the lack of a cognate receptor, dAG appears to have gluco-regulatory action, which adds an additional layer of complexity to ghrelin's regulation of glucose metabolism. This review discusses the current literature on the gluco-regulatory action of the ghrelin system (dAG, AG, GHSR, and GOAT) with specific emphasis aimed toward distinguishing AG vs dAG action.


Subject(s)
Endocrinology , Ghrelin/metabolism , Receptors, Ghrelin/metabolism , Acylation , Animals , Glucose/metabolism , Humans
12.
Gut ; 63(8): 1238-46, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24107591

ABSTRACT

OBJECTIVE: Surgical interventions that prevent nutrient exposure to the duodenum are among the most successful treatments for obesity and diabetes. However, these interventions are highly invasive, irreversible and often carry significant risk. The duodenal-endoluminal sleeve (DES) is a flexible tube that acts as a barrier to nutrient-tissue interaction along the duodenum. We implanted this device in Zucker Diabetic Fatty (ZDF) rats to gain greater understanding of duodenal nutrient exclusion on glucose homeostasis. DESIGN: ZDF rats were randomised to four groups: Naive, sham ad libitum, sham pair-fed, and DES implanted. Food intake, body weight (BW) and body composition were measured for 28 days postoperatively. Glucose, lipid and bile acid metabolism were evaluated, as well as histological assessment of the upper intestine. RESULTS: DES implantation induced a sustained decrease in BW throughout the study that was matched by pair-fed sham animals. Decreased BW resulted from loss of fat, but not lean mass. DES rats were also found to be more glucose tolerant than either ad libitum-fed or pair-fed sham controls, suggesting fat mass independent metabolic benefits. DES also reduced circulating triglyceride and glycerol levels while increasing circulating bile acids. Interestingly, DES stimulated a considerable increase in villus length throughout the upper intestine, which may contribute to metabolic improvements. CONCLUSIONS: Our preclinical results validate DES as a promising therapeutic approach to diabetes and obesity, which offers reversibility, low risk, low invasiveness and triple benefits including fat mass loss, glucose and lipid metabolism improvement which mechanistically may involve increased villus growth in the upper gut.


Subject(s)
Blood Glucose/metabolism , Duodenum/physiology , Intestinal Absorption , Metabolic Syndrome/therapy , Prostheses and Implants , Animals , Bile Acids and Salts/blood , Body Composition , Body Weight , Diabetes Mellitus, Experimental/therapy , Duodenum/pathology , Glucagon-Like Peptide 1/metabolism , Glucose Tolerance Test , Glycerol/blood , Homeostasis , Ileum/pathology , Jejunum/pathology , Male , Obesity/therapy , Random Allocation , Rats , Rats, Zucker , Triglycerides/blood
13.
Diabetes ; 63(2): 505-13, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24186863

ABSTRACT

Several bariatric operations are currently used to treat obesity and obesity-related comorbidities. These vary in efficacy, but most are more effective than current pharmaceutical treatments. Roux-en-Y gastric bypass (RYGB) produces substantial body weight (BW) loss and enhanced glucose tolerance, and is associated with increased secretion of the gut hormone glucagon-like peptide 1 (GLP-1). Given the success of GLP-1-based agents in lowering blood glucose levels and BW, we hypothesized that an individual sensitivity to GLP-1 receptor agonism could predict metabolic benefits of surgeries associated with increased GLP-1 secretion. One hundred ninety-seven high-fat diet-induced obese male Long-Evans rats were monitored for BW loss during exendin-4 (Ex4) administration. Stable populations of responders and nonresponders were identified based on Ex4-induced BW loss and GLP-1-induced improvements in glucose tolerance. Subpopulations of Ex4 extreme responders and nonresponders underwent RYGB surgery. After RYGB, responders and nonresponders showed similar BW loss compared with sham, but nonresponders retained impaired glucose tolerance. These data indicate that the GLP-1 response tests may predict some but not all of the improvements observed after RYGB. These findings present an opportunity to optimize the use of bariatric surgery based on an improved understanding of GLP-1 biology and suggest an opportunity for a more personalized therapeutic approach to the metabolic syndrome.


Subject(s)
Gastric Bypass , Glucose Tolerance Test , Receptors, Glucagon/metabolism , Animals , Dietary Fats/adverse effects , Eating , Exenatide , Gene Expression Regulation/physiology , Glucagon-Like Peptide-1 Receptor , Male , Obesity , Peptides/pharmacology , Rats , Rats, Long-Evans , Receptors, Glucagon/agonists , Receptors, Glucagon/genetics , Venoms/pharmacology , Weight Loss
14.
Diabetes ; 63(1): 122-31, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24062249

ABSTRACT

Growth hormone secretagogue receptors (GHSRs) in the central nervous system (CNS) mediate hyperphagia and adiposity induced by acyl ghrelin (AG). Evidence suggests that des-AG (dAG) has biological activity through GHSR-independent mechanisms. We combined in vitro and in vivo approaches to test possible GHSR-mediated biological activity of dAG. Both AG (100 nmol/L) and dAG (100 nmol/L) significantly increased inositol triphosphate formation in human embryonic kidney-293 cells transfected with human GHSR. As expected, intracerebroventricular infusion of AG in mice increased fat mass (FM), in comparison with the saline-infused controls. Intracerebroventricular dAG also increased FM at the highest dose tested (5 nmol/day). Chronic intracerebroventricular infusion of AG or dAG increased glucose-stimulated insulin secretion (GSIS). Subcutaneously infused AG regulated FM and GSIS in comparison with saline-infused control mice, whereas dAG failed to regulate these parameters even with doses that were efficacious when delivered intracerebroventricularly. Furthermore, intracerebroventricular dAG failed to regulate FM and induce hyperinsulinemia in GHSR-deficient (Ghsr(-/-)) mice. In addition, a hyperinsulinemic-euglycemic clamp suggests that intracerebroventricular dAG impairs glucose clearance without affecting endogenous glucose production. Together, these data demonstrate that dAG is an agonist of GHSR and regulates body adiposity and peripheral glucose metabolism through a CNS GHSR-dependent mechanism.


Subject(s)
Adiposity/physiology , Ghrelin/pharmacology , Glucose/metabolism , Receptors, Ghrelin/metabolism , Adiposity/drug effects , Animals , Central Nervous System/metabolism , Ghrelin/administration & dosage , HEK293 Cells , Humans , Infusions, Intraventricular , Mice
15.
Sci Transl Med ; 5(209): 209ra151, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24174327

ABSTRACT

We report the discovery and translational therapeutic efficacy of a peptide with potent, balanced co-agonism at both of the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This unimolecular dual incretin is derived from an intermixed sequence of GLP-1 and GIP, and demonstrated enhanced antihyperglycemic and insulinotropic efficacy relative to selective GLP-1 agonists. Notably, this superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans). Furthermore, this co-agonist exhibited synergism in reducing fat mass in obese rodents, whereas a selective GIP agonist demonstrated negligible weight-lowering efficacy. The unimolecular dual incretins corrected two causal mechanisms of diabesity, adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. The duration of action of the unimolecular dual incretins was refined through site-specific lipidation or PEGylation to support less frequent administration. These peptides provide comparable pharmacology to the native peptides and enhanced efficacy relative to similarly modified selective GLP-1 agonists. The pharmacokinetic enhancement lessened peak drug exposure and, in combination with less dependence on GLP-1-mediated pharmacology, avoided the adverse gastrointestinal effects that typify selective GLP-1-based agonists. This discovery and validation of a balanced and high-potency dual incretin agonist enables a more physiological approach to management of diseases associated with impaired glucose tolerance.


Subject(s)
Haplorhini/metabolism , Incretins/pharmacology , Rodentia/metabolism , Acylation/drug effects , Adolescent , Adult , Aged , Animals , Diabetes Mellitus, Type 2/drug therapy , Exenatide , Female , Gastric Inhibitory Polypeptide/administration & dosage , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide 1/administration & dosage , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide-1 Receptor , Glucose Tolerance Test , Humans , Hyperglycemia/drug therapy , Incretins/administration & dosage , Incretins/therapeutic use , Insulin/metabolism , Liraglutide , Male , Mice , Middle Aged , Peptides/pharmacology , Rats , Receptors, Gastrointestinal Hormone , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Treatment Outcome , Venoms/pharmacology , Weight Loss/drug effects , Young Adult
16.
Diabetes ; 62(9): 3261-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23775764

ABSTRACT

Bariatric procedures vary in efficacy, but overall are more effective than behavioral and pharmaceutical treatment. Roux-en-Y gastric bypass causes increased secretion of glucagon-like peptide 1 (GLP-1) and reduces body weight (BW) more than adjustable gastric banding (AGB), which does not trigger increased GLP-1 secretion. Since GLP-1-based drugs consistently reduce BW, we hypothesized that GLP-1 receptor (GLP-1R) agonists would augment the effects of AGB. Male Long-Evans rats with diet-induced obesity received AGB implantation or sham surgery. GLP-1R agonism, cannabinoid receptor-1 (CB1-R) antagonism, or vehicle was combined with inflation to evaluate interaction between AGB and pharmacological treatments. GLP1-R agonism reduced BW in both sham and AGB rats (left uninflated) compared with vehicle-treated animals. Subsequent band inflation was ineffective in vehicle-treated rats but enhanced weight loss stimulated by GLP1-R agonism. In contrast, there was no additional BW loss when CB1-R antagonism was given with AGB. We found band inflation to trigger neural activation in areas of the nucleus of the solitary tract known to be targeted by GLP-1R agonism, offering a potential mechanism for the interaction. These data show that GLP-1R agonism, but not CB1-R antagonism, improves weight loss achieved by AGB and suggest an opportunity to optimize bariatric surgery with adjunctive pharmacotherapy.


Subject(s)
Obesity/drug therapy , Obesity/surgery , Receptors, Glucagon/agonists , Animals , Body Composition/drug effects , Eating/drug effects , Exenatide , Gastric Bypass , Gastroplasty , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor , Immunohistochemistry , Male , Obesity/etiology , Obesity/metabolism , Peptides/therapeutic use , Rats , Rats, Long-Evans , Receptors, Cannabinoid/metabolism , Venoms/therapeutic use
17.
Nat Commun ; 4: 1968, 2013.
Article in English | MEDLINE | ID: mdl-23744028

ABSTRACT

The G protein-coupled receptor 83 (Gpr83) is widely expressed in brain regions regulating energy metabolism. Here we report that hypothalamic expression of Gpr83 is regulated in response to nutrient availability and is decreased in obese mice compared with lean mice. In the arcuate nucleus, Gpr83 colocalizes with the ghrelin receptor (Ghsr1a) and the agouti-related protein. In vitro analyses show heterodimerization of Gpr83 with Ghsr1a diminishes activation of Ghsr1a by acyl-ghrelin. The orexigenic and adipogenic effect of ghrelin is accordingly potentiated in Gpr83-deficient mice. Interestingly, Gpr83 knock-out mice have normal body weight and glucose tolerance when fed a regular chow diet, but are protected from obesity and glucose intolerance when challenged with a high-fat diet, despite hyperphagia and increased hypothalamic expression of agouti-related protein, Npy, Hcrt and Ghsr1a. Together, our data suggest that Gpr83 modulates ghrelin action but also indicate that Gpr83 regulates systemic metabolism through other ghrelin-independent pathways.


Subject(s)
Energy Metabolism , Ghrelin/metabolism , Receptors, G-Protein-Coupled/metabolism , Agouti-Related Protein/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Body Composition/drug effects , Body Weight/drug effects , Diet, High-Fat , Energy Metabolism/drug effects , Feeding Behavior/drug effects , Gene Expression Profiling , Ghrelin/administration & dosage , Ghrelin/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Phenotype , Protein Multimerization/drug effects , Protein Transport/drug effects , Rats , Receptor, Melanocortin, Type 3/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Ghrelin/metabolism , Signal Transduction/drug effects
18.
PLoS One ; 8(4): e61822, 2013.
Article in English | MEDLINE | ID: mdl-23630616

ABSTRACT

Type 2 Diabetes is a global health burden and based on current estimates will become an even larger problem in the future. Developing new strategies to prevent and treat diabetes is a scientific challenge of high priority. The stomach hormone ghrelin has been associated with playing a role in the regulation of glucose homeostasis. However, its precise mechanism and impact on whole glucose metabolism remains to be elucidated. This study aims to clarify the role of the two ghrelin isoforms acyl- and desacyl ghrelin in regulating glucose homeostasis. Therefore ghrelin activating enzyme Ghrelin-O-acyltransferase (GOAT) was ablated in leptin-deficient ob/ob mice to study whether specific acyl ghrelin deficiency or desacyl ghrelin abundance modifies glucose tolerance on a massively obese background. As targeted deletion of acyl ghrelin does not improve glucose homeostasis in our GOAT-ob/ob mouse model we conclude that neither acyl ghrelin nor the increased ratio of desacyl/acyl ghrelin is crucial for controlling glucose homeostasis in the here presented model of massive obesity induced by leptin deficiency.


Subject(s)
Acyltransferases/genetics , Ghrelin/blood , Glucose Intolerance/enzymology , Leptin/deficiency , Protein Processing, Post-Translational , Acylation , Acyltransferases/deficiency , Adiposity , Animals , Body Weight , Female , Gene Knockout Techniques , Ghrelin/metabolism , Glucose/metabolism , Glucose Intolerance/blood , Homeostasis , Male , Membrane Proteins , Mice , Mice, Knockout , Mice, Obese , Obesity/blood , Obesity/enzymology , Phenotype
19.
Diabetes ; 62(5): 1453-63, 2013 May.
Article in English | MEDLINE | ID: mdl-23305646

ABSTRACT

Glucagon, an essential regulator of glucose homeostasis, also modulates lipid metabolism and promotes weight loss, as reflected by the wasting observed in glucagonoma patients. Recently, coagonist peptides that include glucagon agonism have emerged as promising therapeutic candidates for the treatment of obesity and diabetes. We developed a novel stable and soluble glucagon receptor (GcgR) agonist, which allowed for in vivo dissection of glucagon action. As expected, chronic GcgR agonism in mice resulted in hyperglycemia and lower body fat and plasma cholesterol. Notably, GcgR activation also raised hepatic expression and circulating levels of fibroblast growth factor 21 (FGF21). This effect was retained in isolated primary hepatocytes from wild-type (WT) mice, but not GcgR knockout mice. We confirmed this link in healthy human volunteers, where injection of natural glucagon increased plasma FGF21 within hours. Functional relevance was evidenced in mice with genetic deletion of FGF21, where GcgR activation failed to induce the body weight loss and lipid metabolism changes observed in WT mice. Taken together, these data reveal for the first time that glucagon controls glucose, energy, and lipid metabolism at least in part via FGF21-dependent pathways.


Subject(s)
Fibroblast Growth Factors/metabolism , Glucagon/metabolism , Hepatocytes/metabolism , Receptors, Glucagon/metabolism , Adult , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Cells, Cultured , Cross-Over Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Double-Blind Method , Female , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Glucagon/agonists , Glucagon/pharmacology , HEK293 Cells , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin Resistance , Male , Mice , Mice, Knockout , Mice, Mutant Strains , Molecular Targeted Therapy , Obesity/blood , Obesity/drug therapy , Obesity/metabolism , Peptides/chemical synthesis , Peptides/pharmacokinetics , Peptides/physiology , Peptides/therapeutic use , Rats , Receptors, Glucagon/agonists , Receptors, Glucagon/genetics , Recombinant Proteins/agonists , Recombinant Proteins/metabolism
20.
J Clin Invest ; 123(1): 469-78, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23257354

ABSTRACT

The scaffold protein p62 (sequestosome 1; SQSTM1) is an emerging key molecular link among the metabolic, immune, and proliferative processes of the cell. Here, we report that adipocyte-specific, but not CNS-, liver-, muscle-, or myeloid-specific p62-deficient mice are obese and exhibit a decreased metabolic rate caused by impaired nonshivering thermogenesis. Our results show that p62 regulates energy metabolism via control of mitochondrial function in brown adipose tissue (BAT). Accordingly, adipocyte-specific p62 deficiency led to impaired mitochondrial function, causing BAT to become unresponsive to ß-adrenergic stimuli. Ablation of p62 leads to decreased activation of p38 targets, affecting signaling molecules that control mitochondrial function, such as ATF2, CREB, PGC1α, DIO2, NRF1, CYTC, COX2, ATP5ß, and UCP1. p62 ablation in HIB1B and BAT primary cells demonstrated that p62 controls thermogenesis in a cell-autonomous manner, independently of brown adipocyte development or differentiation. Together, our data identify p62 as a novel regulator of mitochondrial function and brown fat thermogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Thermogenesis/physiology , Adaptor Proteins, Signal Transducing/genetics , Adipocytes, Brown/cytology , Adipose Tissue, Brown/cytology , Animals , Cells, Cultured , Heat-Shock Proteins/genetics , MAP Kinase Signaling System/physiology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Organ Specificity/genetics , Sequestosome-1 Protein , Transcription Factors/genetics , Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...