Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Pediatr Dermatol ; 36(6): 906-908, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31576605

ABSTRACT

Angiokeratoma corporis diffusum refers to symmetrical clusters of minute red papules in a "bathing trunk" distribution and is considered the cutaneous hallmark of Fabry disease. Acid sphingomyelinase deficiency is an autosomal recessive sphingolipidosis, which presents with massive hepatosplenomegaly, pulmonary infiltrates, and skeletal abnormalities. We present the unusual case of a 12-year-old girl with acid sphingomyelinase deficiency who developed characteristic lesions of angiokeratoma corporis diffusum.


Subject(s)
Fabry Disease/diagnosis , Niemann-Pick Disease, Type A/diagnosis , Child , Dermoscopy , Diagnosis, Differential , Female , Humans
2.
Hum Mutat ; 40(7): 842-864, 2019 07.
Article in English | MEDLINE | ID: mdl-30882951

ABSTRACT

Mutations in the GNPTAB and GNPTG genes cause mucolipidosis (ML) type II, type III alpha/beta, and type III gamma, which are autosomal recessively inherited lysosomal storage disorders. GNPTAB and GNPTG encode the α/ß-precursor and the γ-subunit of N-acetylglucosamine (GlcNAc)-1-phosphotransferase, respectively, the key enzyme for the generation of mannose 6-phosphate targeting signals on lysosomal enzymes. Defective GlcNAc-1-phosphotransferase results in missorting of lysosomal enzymes and accumulation of non-degradable macromolecules in lysosomes, strongly impairing cellular function. MLII-affected patients have coarse facial features, cessation of statural growth and neuromotor development, severe skeletal abnormalities, organomegaly, and cardiorespiratory insufficiency leading to death in early childhood. MLIII alpha/beta and MLIII gamma are attenuated forms of the disease. Since the identification of the GNPTAB and GNPTG genes, 564 individuals affected by MLII or MLIII have been described in the literature. In this report, we provide an overview on 258 and 50 mutations in GNPTAB and GNPTG, respectively, including 58 novel GNPTAB and seven novel GNPTG variants. Comprehensive functional studies of GNPTAB missense mutations did not only gain insights into the composition and function of the GlcNAc-1-phosphotransferase, but also helped to define genotype-phenotype correlations to predict the clinical outcome in patients.


Subject(s)
Mucolipidoses/genetics , Mutation , Transferases (Other Substituted Phosphate Groups)/genetics , Exons , Humans , Introns , Lysosomal Storage Diseases, Nervous System/classification , Lysosomal Storage Diseases, Nervous System/genetics , Mucolipidoses/classification , Phenotype , Prognosis , Protein Domains , Transferases (Other Substituted Phosphate Groups)/chemistry
3.
Arch Dis Child ; 102(11): 1019-1029, 2017 11.
Article in English | MEDLINE | ID: mdl-28468868

ABSTRACT

BACKGROUND: Inborn errors of metabolism (IEMs) underlie a substantial proportion of paediatric disease burden but their genetic diagnosis can be challenging using the traditional approaches. METHODS: We designed and validated a next-generation sequencing (NGS) panel of 226 IEM genes, created six overlapping phenotype-based subpanels and tested 102 individuals, who presented clinically with suspected childhood-onset IEMs. RESULTS: In 51/102 individuals, NGS fully or partially established the molecular cause or identified other actionable diagnoses. Causal mutations were identified significantly more frequently when the biochemical phenotype suggested a specific IEM or a group of IEMs (p<0.0001), demonstrating the pivotal role of prior biochemical testing in guiding NGS analysis. The NGS panel helped to avoid further invasive, hazardous, lengthy or expensive investigations in 69% individuals (p<0.0001). Additional functional testing due to novel or unexpected findings had to be undertaken in only 3% of subjects, demonstrating that the use of NGS does not significantly increase the burden of subsequent follow-up testing. Even where a molecular diagnosis could not be achieved, NGS-based approach assisted in the management and counselling by reducing the likelihood of a high-penetrant genetic cause. CONCLUSION: NGS has significant clinical utility for the diagnosis of IEMs. Biochemical testing and NGS analysis play complementary roles in the diagnosis of IEMs. Incorporating NGS into the diagnostic algorithm of IEMs can improve the accuracy of diagnosis.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Metabolism, Inborn Errors/diagnosis , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Metabolism, Inborn Errors/genetics , Young Adult
4.
Hum Genome Var ; 3: 16031, 2016.
Article in English | MEDLINE | ID: mdl-27766162

ABSTRACT

Mucopolysaccharidosis I (MPS I) is a rare autosomal recessive multisystem lysosomal storage disorder. It is caused by biallelic loss-of-function variants in IDUA, encoding alpha-l iduronidase. Here, we describe an individual affected by MPS I due to a paternally inherited deletion of IDUA exons 1 and 2, c.(?_-88)_(299+1_300-1)del and a whole-gene deletion of IDUA (?_-88?)_(*136?)del secondary to maternal somatic mosaicism. We define a previously unreported mutational mechanism for this disorder.

5.
BMC Neurol ; 15: 257, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26666848

ABSTRACT

BACKGROUND: Niemann-Pick disease type C (NP-C) is a rare neurovisceral lipid storage disorder characterised by progressive, disabling neurological symptoms and premature death in most patients. During the last decade, national cohort studies have accrued a great deal of data on the symptomatology and natural history of NP-C. METHODS: In an observational cohort study, we present a substantial update based on the clinical presentation and follow-up of all known UK-based patients with a confirmed diagnosis of NP-C who have been tracked on an electronic database at the Department of Genetic Medicine, University of Manchester, UK. Patients were stratified according to accepted age-at-neurological-onset categories. Data on patients' clinical signs and symptoms, medical history and genetic studies are summarised using descriptive methods. RESULTS: A total of 146 patients with NP-C were included, representing the full known UK NP-C cohort, as observed from database information between 1999 and the end of 2011: 72 patients (49 %) were alive at the end of the observation period. Among a total of 116 patients (79 %) who possessed at least one identified, disease-causing NP-C gene mutation, 114 (98 %) had NPC1 and two (2 %) had NPC2 mutations. Overall, 53/194 (27 %) identified mutations were novel. Six patients (4 %) had an early, non-neurological neonatal onset form of NP-C. The numbers (%) of patients with accepted age-at-neurological onset forms were: 8 (5 %) early-infantile onset, 51 (35 %) late-infantile onset, 42 (29 %) juvenile onset, and 25 (17 %) adolescent/adult onset. Fourteen patients diagnosed based on visceral symptoms and/or sibling history, confirmed in most cases by genetic analysis, did not have any neurological manifestations at last follow up (11 patients with mean [SD] age at last follow up 2.5 [1.8] years: 3 with mean [SD] age at death 20.8 [15.9] years). A total of 51 patients (35 %) received miglustat therapy. The mean (SD) overall treatment duration up to the end of the observation period was 2.6 (2.3) years. CONCLUSIONS: This UK cohort is the largest national NP-C cohort reported to date, and confirms the wide phenotypic variability of the disease, as reported in other countries. Further analyses are required to assess the impact of miglustat therapy on neurological disease progression.


Subject(s)
Niemann-Pick Disease, Type C/epidemiology , Adolescent , Adult , Age of Onset , Carrier Proteins/genetics , Child , Child, Preschool , Cohort Studies , Disease Progression , Female , Follow-Up Studies , Glycoproteins/genetics , Humans , Infant , Intracellular Signaling Peptides and Proteins , Male , Membrane Glycoproteins/genetics , Mutation , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/genetics , United Kingdom/epidemiology , Vesicular Transport Proteins , Young Adult
6.
Hum Mutat ; 31(7): 858-65, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20578233

ABSTRACT

The molecular genetic diagnosis of inherited metabolic disorders is challenging. The diseases are rare, and most show locus heterogeneity. Hence, testing of the genes associated with IMDs is time consuming and often not easily available. We report a resequencing array that allows the simultaneous resequencing of up to 92 genes associated with IMDs. To validate the array, DNA samples from 51 patients with 52 different known variants (including point variants, small insertion, and deletions [indels]) in seven genes (C14ORF133, GAA, NPC1, NPC2, VPS33B, WFS1, and SLC19A2) were amplified by PCR and hybridized to the array. A further patient cohort with 48 different mutations in NPC1 were analyzed blind. Out of 76 point variants, 73 were identified using automated software analysis followed by manual review. Ten insertion and deletion variants were detected in the extra tiling using mutation specific probes, with 11 heterozygous deletions and 3 heterozygous insertions. In summary, we identified 96% (95% confidence interval [CI] 89-99%) of point variants added to the array, but the pickup rate reduced to 83% (95% CI 75-89%) when insertions/deletions were included. Although the methodology has strengths and weaknesses, application of this technique could expedite diagnosis in most patients with multilocus IMDs.


Subject(s)
Metabolic Diseases/genetics , Mutation , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , Carrier Proteins/genetics , Genetic Predisposition to Disease , Glycoproteins/genetics , Humans , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Metabolic Diseases/diagnosis , Niemann-Pick C1 Protein , Polymerase Chain Reaction , Reproducibility of Results , Research Design , Vesicular Transport Proteins/genetics , alpha-Glucosidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...